zoukankan      html  css  js  c++  java
  • hugeng007_RandomForestClassifier_demo

    # -*- coding:utf-8 -*-
    import numpy as np
    import matplotlib.pyplot as plt
    from sklearn import datasets
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.ensemble import RandomForestClassifier
    
    """
    生成分类面数据点
    """
    def make_meshgrid(x, y, h=.02):
        """Create a mesh of points to plot in
    
        Parameters
        ----------
        x: data to base x-axis meshgrid on
        y: data to base y-axis meshgrid on
        h: stepsize for meshgrid, optional
    
        Returns
        -------
        xx, yy : ndarray
        """
        x_min, x_max = x.min() - 1, x.max() + 1
        y_min, y_max = y.min() - 1, y.max() + 1
        xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                             np.arange(y_min, y_max, h))
        return xx, yy
    
    """
    利用分类器对数据点进行分类
    """
    def plot_contours(ax, clf, xx, yy, **params):
        """Plot the decision boundaries for a classifier.
    
        Parameters
        ----------
        ax: matplotlib axes object
        clf: a classifier
        xx: meshgrid ndarray
        yy: meshgrid ndarray
        params: dictionary of params to pass to contourf, optional
        """
        Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
        Z = Z.reshape(xx.shape)
        out = ax.contourf(xx, yy, Z, **params)
        return out
    
    """
    实验目的:随机森林分类实验
    
    数据集:本程序使用Iris数据集是常用的分类实验数据集,由Fisher, 1936收集整理。
    Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集。
    数据集包含150个数据集,分为3类,每类50个数据,每个数据包含4个属性。
    可通过花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性预测鸢尾花卉属于
    (Setosa,Versicolour,Virginica)三个种类中的哪一类。
    
    注意:为了方面可视化,实验中取Iris数据集中前两维特征进行模型训练
    """
    
    # import some data to play with
    iris = datasets.load_iris()
    # Take the first two features. We could avoid this by using a two-dim dataset
    X = iris.data[:, :2]
    y = iris.target
    
    """
    函数说明:
    	class sklearn.ensemble.RandomForestClassifier(n_estimators=10, criterion=’gini’, max_depth=None, 
    							min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, 
    							max_features=’auto’, max_leaf_nodes=None, min_impurity_decrease=0.0, 
    							min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=1, 
    							random_state=None, verbose=0, warm_start=False, class_weight=None)
     
    参数说明:
    http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
    """
    # Create and fit an AdaBoosted decision tree
    clf = RandomForestClassifier(max_depth=3, n_estimators=5, max_features=1)
    clf.fit(X,y)
    
    # title for the plots
    title = ('RandomForestClassifier')
    
    # Set-up window for plotting.
    fig, ax = plt.subplots(1, 1)
    plt.subplots_adjust(wspace=0.4, hspace=0.4)
    
    X0, X1 = X[:, 0], X[:, 1]
    xx, yy = make_meshgrid(X0, X1)
    
    """
    对平面内的点集分类并进行可视化处理
    """
    plot_contours(ax, clf, xx, yy,
    			  cmap=plt.cm.coolwarm, alpha=0.8)
    ax.scatter(X0, X1, c=y, cmap=plt.cm.coolwarm, s=20, edgecolors='k')
    ax.set_xlim(xx.min(), xx.max())
    ax.set_ylim(yy.min(), yy.max())
    ax.set_xlabel('Sepal length')
    ax.set_ylabel('Sepal width')
    ax.set_xticks(())
    ax.set_yticks(())
    ax.set_title(title)
    
    plt.show()
    

  • 相关阅读:
    mysql check约束无效
    Illegal mix of collations for operation 'concat'
    执行automake时报错 error while making link: Operation not supported
    GCC 编译详解[转]
    gcc的选项
    关于MFLAGS与MAKEFLAGS
    gcc和g++的区别
    g++参数介绍
    gcc/g++基本命令简介
    semver语义化版本号
  • 原文地址:https://www.cnblogs.com/hugeng007/p/9471674.html
Copyright © 2011-2022 走看看