zoukankan      html  css  js  c++  java
  • hugeng007_SupportVectorMachine_demo

    # -*- coding:utf-8 -*-
    import numpy as np
    import matplotlib.pyplot as plt
    from sklearn import svm, datasets
    
    """
    生成分类面数据点
    """
    def make_meshgrid(x, y, h=.02):
        """Create a mesh of points to plot in
    
        Parameters
        ----------
        x: data to base x-axis meshgrid on
        y: data to base y-axis meshgrid on
        h: stepsize for meshgrid, optional
    
        Returns
        -------
        xx, yy : ndarray
        """
        x_min, x_max = x.min() - 1, x.max() + 1
        y_min, y_max = y.min() - 1, y.max() + 1
        xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                             np.arange(y_min, y_max, h))
        return xx, yy
    
    """
    利用分类器对数据点进行分类
    """
    def plot_contours(ax, clf, xx, yy, **params):
        """Plot the decision boundaries for a classifier.
    
        Parameters
        ----------
        ax: matplotlib axes object
        clf: a classifier
        xx: meshgrid ndarray
        yy: meshgrid ndarray
        params: dictionary of params to pass to contourf, optional
        """
        Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
        Z = Z.reshape(xx.shape)
        out = ax.contourf(xx, yy, Z, **params)
        return out
    
    """
    实验目的:支持向量机实验
    
    数据集:本程序使用Iris数据集是常用的分类实验数据集,由Fisher, 1936收集整理。
    Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集。
    数据集包含150个数据集,分为3类,每类50个数据,每个数据包含4个属性。
    可通过花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性预测鸢尾花卉属于
    (Setosa,Versicolour,Virginica)三个种类中的哪一类。
    
    注意:为了方面可视化,实验中取Iris数据集中前两维特征进行模型训练
    """
    
    # import some data to play with
    iris = datasets.load_iris()
    # Take the first two features. We could avoid this by using a two-dim dataset
    X = iris.data[:, :2]
    y = iris.target
    
    """
    函数说明:
    	class sklearn.svm.SVC(C=1.0, kernel=’rbf’, degree=3, gamma=’auto’, 
    					coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, 
    					class_weight=None, verbose=False, max_iter=-1, decision_function_shape=’ovr’,
    					random_state=None)
     
    参数说明:
    http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC
    """
    # we create an instance of SVM and fit out data. We do not scale our
    # data since we want to plot the support vectors
    C = 1.0  # SVM regularization parameter
    models = (svm.SVC(kernel='linear', C=C),
              svm.LinearSVC(C=C),
              svm.SVC(kernel='rbf', gamma=0.7, C=C),
              svm.SVC(kernel='poly', degree=3, C=C))
    models = (clf.fit(X, y) for clf in models)
    
    # title for the plots
    titles = ('SVC with linear kernel',
              'LinearSVC (linear kernel)',
              'SVC with RBF kernel',
              'SVC with polynomial (degree 3) kernel')
    
    # Set-up 2x2 grid for plotting.
    fig, sub = plt.subplots(2, 2)
    plt.subplots_adjust(wspace=0.4, hspace=0.4)
    
    X0, X1 = X[:, 0], X[:, 1]
    xx, yy = make_meshgrid(X0, X1)
    
    """
    对平面内的点集分类并进行可视化处理
    """
    for clf, title, ax in zip(models, titles, sub.flatten()):
        plot_contours(ax, clf, xx, yy,
                      cmap=plt.cm.coolwarm, alpha=0.8)
        ax.scatter(X0, X1, c=y, cmap=plt.cm.coolwarm, s=20, edgecolors='k')
        ax.set_xlim(xx.min(), xx.max())
        ax.set_ylim(yy.min(), yy.max())
        ax.set_xlabel('Sepal length')
        ax.set_ylabel('Sepal width')
        ax.set_xticks(())
        ax.set_yticks(())
        ax.set_title(title)
    
    plt.show()
    

  • 相关阅读:
    ios 正则表达式
    2016/2/26 jQuery的技术 1,安装 2,语法选择器$ 事件触发 3,常用jQuery函数
    2016/2/26 <marquee></marquee>实现多种滚动效果
    2016/2/25 onchange 应用
    2016/2/25 1、<表单验证<form></form> 2、正则表达式 3、事件
    2016/2/25 1, margin auto 垂直方向测试 无效 2,margin重叠 3,哪些是块状哪些是内联 4,display:block inline 导航栏把内联转块状最常见+ 扩展
    2016/2/25 html+css学习资源
    2016/2/24 css画三角形 border的上右下左的调整 以及内区域的无限变小 边界透明
    2016/2/24 1,css有几种引入方式 2,div除了可以声明id来控制,还可以声明什么控制? 3,如何让2个div,并排显示。4,清除浮动 clear:left / right / both
    2016/2/24 1,dotctype有几种? 2,了解html的发展历史
  • 原文地址:https://www.cnblogs.com/hugeng007/p/9471680.html
Copyright © 2011-2022 走看看