zoukankan      html  css  js  c++  java
  • hugeng007_tensorflow_mnist.ipynb

    # encoding=utf-8
    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
    
    def weight_variable(shape):
        initial = tf.truncated_normal(shape, stddev=0.1)
        return tf.Variable(initial)
    
    def bias_variable(shape):
        initial = tf.constant(0.1, shape=shape)
        return tf.Variable(initial)
    
    myGraph = tf.Graph()
    with myGraph.as_default():
        with tf.name_scope('inputsAndLabels'):
            x_raw = tf.placeholder(tf.float32, shape=[None, 784])
            y = tf.placeholder(tf.float32, shape=[None, 10])
    
        with tf.name_scope('hidden1'):
            x = tf.reshape(x_raw, shape=[-1,28,28,1])
            W_conv1 = weight_variable([5,5,1,32])
            b_conv1 = bias_variable([32])
            l_conv1 = tf.nn.relu(tf.nn.conv2d(x,W_conv1, strides=[1,1,1,1],padding='SAME') + b_conv1)
            l_pool1 = tf.nn.max_pool(l_conv1, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')
    
            tf.summary.image('x_input',x,max_outputs=10)
            tf.summary.histogram('W_con1',W_conv1)
            tf.summary.histogram('b_con1',b_conv1)
    
        with tf.name_scope('hidden2'):
            W_conv2 = weight_variable([5,5,32,64])
            b_conv2 = bias_variable([64])
            l_conv2 = tf.nn.relu(tf.nn.conv2d(l_pool1, W_conv2, strides=[1,1,1,1], padding='SAME')+b_conv2)
            l_pool2 = tf.nn.max_pool(l_conv2, ksize=[1,2,2,1],strides=[1,2,2,1], padding='SAME')
    
            tf.summary.histogram('W_con2', W_conv2)
            tf.summary.histogram('b_con2', b_conv2)
    
        with tf.name_scope('fc1'):
            W_fc1 = weight_variable([64*7*7, 1024])
            b_fc1 = bias_variable([1024])
            l_pool2_flat = tf.reshape(l_pool2, [-1, 64*7*7])
            l_fc1 = tf.nn.relu(tf.matmul(l_pool2_flat, W_fc1) + b_fc1)
            keep_prob = tf.placeholder(tf.float32)
            l_fc1_drop = tf.nn.dropout(l_fc1, keep_prob)
    
            tf.summary.histogram('W_fc1', W_fc1)
            tf.summary.histogram('b_fc1', b_fc1)
    
        with tf.name_scope('fc2'):
            W_fc2 = weight_variable([1024, 10])
            b_fc2 = bias_variable([10])
            y_conv = tf.matmul(l_fc1_drop, W_fc2) + b_fc2
    
            tf.summary.histogram('W_fc1', W_fc1)
            tf.summary.histogram('b_fc1', b_fc1)
    
        with tf.name_scope('train'):
            cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=y_conv, labels=y))
            train_step = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(cross_entropy)
            correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y, 1))
            accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    
            tf.summary.scalar('loss', cross_entropy)
            tf.summary.scalar('accuracy', accuracy)
    
    
    with tf.Session(graph=myGraph) as sess:
        sess.run(tf.global_variables_initializer())
        saver = tf.train.Saver()
    
        merged = tf.summary.merge_all()
        summary_writer = tf.summary.FileWriter('./mnistEven/', graph=sess.graph)
    
        for i in range(10001):
            batch = mnist.train.next_batch(50)
            sess.run(train_step,feed_dict={x_raw:batch[0], y:batch[1], keep_prob:0.5})
            if i%100 == 0:
                train_accuracy = accuracy.eval(feed_dict={x_raw:batch[0], y:batch[1], keep_prob:1.0})
                print('step %d training accuracy:%g'%(i, train_accuracy))
    
                summary = sess.run(merged,feed_dict={x_raw:batch[0], y:batch[1], keep_prob:1.0})
                summary_writer.add_summary(summary,i)
    
        test_accuracy = accuracy.eval(feed_dict={x_raw:mnist.test.images, y:mnist.test.labels, keep_prob:1.0})
        print('test accuracy:%g' %test_accuracy)
    
        saver.save(sess,save_path='./model/mnistmodel',global_step=1)
    
    WARNING:tensorflow:From <ipython-input-4-a36400cc0616>:4: read_data_sets (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
    Instructions for updating:
    Please use alternatives such as official/mnist/dataset.py from tensorflow/models.
    WARNING:tensorflow:From /home/binder/.pyenv/versions/3.6.5/lib/python3.6/site-packages/tensorflow/contrib/learn/python/learn/datasets/mnist.py:260: maybe_download (from tensorflow.contrib.learn.python.learn.datasets.base) is deprecated and will be removed in a future version.
    Instructions for updating:
    Please write your own downloading logic.
    WARNING:tensorflow:From /home/binder/.pyenv/versions/3.6.5/lib/python3.6/site-packages/tensorflow/contrib/learn/python/learn/datasets/mnist.py:262: extract_images (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
    Instructions for updating:
    Please use tf.data to implement this functionality.
    Extracting MNIST_data/train-images-idx3-ubyte.gz
    WARNING:tensorflow:From /home/binder/.pyenv/versions/3.6.5/lib/python3.6/site-packages/tensorflow/contrib/learn/python/learn/datasets/mnist.py:267: extract_labels (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
    Instructions for updating:
    Please use tf.data to implement this functionality.
    Extracting MNIST_data/train-labels-idx1-ubyte.gz
    WARNING:tensorflow:From /home/binder/.pyenv/versions/3.6.5/lib/python3.6/site-packages/tensorflow/contrib/learn/python/learn/datasets/mnist.py:110: dense_to_one_hot (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
    Instructions for updating:
    Please use tf.one_hot on tensors.
    Extracting MNIST_data/t10k-images-idx3-ubyte.gz
    Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
    WARNING:tensorflow:From /home/binder/.pyenv/versions/3.6.5/lib/python3.6/site-packages/tensorflow/contrib/learn/python/learn/datasets/mnist.py:290: DataSet.__init__ (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
    Instructions for updating:
    Please use alternatives such as official/mnist/dataset.py from tensorflow/models.
    WARNING:tensorflow:From <ipython-input-4-a36400cc0616>:60: softmax_cross_entropy_with_logits (from tensorflow.python.ops.nn_ops) is deprecated and will be removed in a future version.
    Instructions for updating:
    
    Future major versions of TensorFlow will allow gradients to flow
    into the labels input on backprop by default.
    
    See @{tf.nn.softmax_cross_entropy_with_logits_v2}.
    
    step 0 training accuracy:0.08
    step 100 training accuracy:0.9
    step 200 training accuracy:0.94
    step 300 training accuracy:0.94
    step 400 training accuracy:0.94
    step 500 training accuracy:0.86
    step 600 training accuracy:0.96
    step 700 training accuracy:0.92
    step 800 training accuracy:0.96
    step 900 training accuracy:0.98
    step 1000 training accuracy:0.96
    step 1100 training accuracy:0.96
    step 1200 training accuracy:1
    step 1300 training accuracy:0.96
    step 1400 training accuracy:0.98
    step 1500 training accuracy:0.98
    step 1600 training accuracy:0.98
    step 1700 training accuracy:1
    step 1800 training accuracy:0.96
    step 1900 training accuracy:1
    step 2000 training accuracy:1
    step 2100 training accuracy:0.94
    step 2200 training accuracy:1
    step 2300 training accuracy:1
    step 2400 training accuracy:1
    step 2500 training accuracy:1
    step 2600 training accuracy:0.98
    step 2700 training accuracy:0.96
    step 2800 training accuracy:1
    step 2900 training accuracy:1
    step 3000 training accuracy:0.98
    step 3100 training accuracy:0.96
    step 3200 training accuracy:0.96
    step 3300 training accuracy:1
    step 3400 training accuracy:0.98
    step 3500 training accuracy:0.98
    step 3600 training accuracy:0.96
    step 3700 training accuracy:0.96
    step 3800 training accuracy:0.96
    step 3900 training accuracy:0.98
    step 4000 training accuracy:0.98
    step 4100 training accuracy:0.98
    step 4200 training accuracy:1
    step 4300 training accuracy:0.98
    step 4400 training accuracy:0.98
    step 4500 training accuracy:1
    step 4600 training accuracy:0.98
    step 4700 training accuracy:1
    step 4800 training accuracy:1
    step 4900 training accuracy:0.98
    step 5000 training accuracy:0.98
    step 5100 training accuracy:1
    step 5200 training accuracy:1
    step 5300 training accuracy:1
    step 5400 training accuracy:1
    step 5500 training accuracy:0.98
    step 5600 training accuracy:1
    step 5700 training accuracy:1
    step 5800 training accuracy:0.98
    step 5900 training accuracy:0.98
    step 6000 training accuracy:1
    step 6100 training accuracy:1
    step 6200 training accuracy:0.96
    step 6300 training accuracy:1
    step 6400 training accuracy:1
    step 6500 training accuracy:1
    step 6600 training accuracy:0.96
    step 6700 training accuracy:1
    step 6800 training accuracy:1
    step 6900 training accuracy:1
    step 7000 training accuracy:1
    step 7100 training accuracy:1
    step 7200 training accuracy:1
    step 7300 training accuracy:1
    step 7400 training accuracy:1
    step 7500 training accuracy:1
    step 7600 training accuracy:1
    step 7700 training accuracy:1
    step 7800 training accuracy:0.98
    step 7900 training accuracy:1
    step 8000 training accuracy:1
    step 8100 training accuracy:1
    step 8200 training accuracy:1
    step 8300 training accuracy:1
    step 8400 training accuracy:1
    step 8500 training accuracy:1
    step 8600 training accuracy:0.98
    step 8700 training accuracy:1
    step 8800 training accuracy:0.98
    step 8900 training accuracy:1
    step 9000 training accuracy:1
    step 9100 training accuracy:1
    step 9200 training accuracy:0.98
    step 9300 training accuracy:1
    step 9400 training accuracy:1
    step 9500 training accuracy:1
    step 9600 training accuracy:1
    step 9700 training accuracy:1
    step 9800 training accuracy:1
    step 9900 training accuracy:1
    step 10000 training accuracy:1
    
  • 相关阅读:
    Oracle Form Builder
    springboot post xml
    前台日期字符串 提交到后台 组装entity失败原因
    解析-dom编程
    解析-依赖注入DI
    vs 常用插件
    java 代码块 和 C#的代码块 对比
    ubuntu 常用命令
    ubuntu node
    使用 vs2015 搭建nodejs 开发环境
  • 原文地址:https://www.cnblogs.com/hugeng007/p/9487051.html
Copyright © 2011-2022 走看看