zoukankan      html  css  js  c++  java
  • hugeng007_mnist_demo

    mnist

    • mnist classification with tensorflow(nn,cnn,lstm,nlstm,bi-lstm,cnn-rnn)

    mnist

    from tensorflow.examples.tutorials.mnist import input_data
    import tensorflow as tf
    
    def compute_accuracy(v_x, v_y):
        global prediction
        #input v_x to nn and get the result with y_pre
        y_pre = sess.run(prediction, feed_dict={x:v_x})
        #find how many right
        correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_y,1))
        #calculate average
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        #get input content
        result = sess.run(accuracy,feed_dict={x: v_x, y: v_y})
        return result
    
    def add_layer(inputs, in_size, out_size, activation_function=None,):
        #init w: a matric in x*y
        Weights = tf.Variable(tf.random_normal([in_size, out_size]))
        #init b: a matric in 1*y
        biases = tf.Variable(tf.zeros([1, out_size]) + 0.1,)
        #calculate the result
        Wx_plus_b = tf.matmul(inputs, Weights) + biases
        #add the active hanshu
        if activation_function is None:
            outputs = Wx_plus_b
        else:
            outputs = activation_function(Wx_plus_b,)
        return outputs
        
    
    #load mnist data
    mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
    #define placeholder for input
    x = tf.placeholder(tf.float32, [None, 784])
    y = tf.placeholder(tf.float32, [None, 10])
    #add layer
    prediction = add_layer(x, 784, 10, activation_function=tf.nn.softmax)
    #calculate the loss
    cross_entropy = tf.reduce_mean(-tf.reduce_sum(y*tf.log(prediction), reduction_indices=[1]))
    #use Gradientdescentoptimizer
    train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
    #init session
    sess = tf.Session()
    #init all variables
    sess.run(tf.global_variables_initializer())
    #start training
    for i in range(1000):
        #get batch to learn easily
        batch_x, batch_y = mnist.train.next_batch(100)
        res=sess.run(train_step,feed_dict={x: batch_x, y: batch_y})
        if i % 10 == 0:
            print(res)
        if i % 50 == 0:
            print(compute_accuracy(mnist.test.images, mnist.test.labels))
    

    mnist_vis_tensorboard

    # encoding=utf-8
    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
    
    def weight_variable(shape):
        initial = tf.truncated_normal(shape, stddev=0.1)
        return tf.Variable(initial)
    
    def bias_variable(shape):
        initial = tf.constant(0.1, shape=shape)
        return tf.Variable(initial)
    
    myGraph = tf.Graph()
    with myGraph.as_default():
        with tf.name_scope('inputsAndLabels'):
            x_raw = tf.placeholder(tf.float32, shape=[None, 784])
            y = tf.placeholder(tf.float32, shape=[None, 10])
    
        with tf.name_scope('hidden1'):
            x = tf.reshape(x_raw, shape=[-1,28,28,1])
            W_conv1 = weight_variable([5,5,1,32])
            b_conv1 = bias_variable([32])
            l_conv1 = tf.nn.relu(tf.nn.conv2d(x,W_conv1, strides=[1,1,1,1],padding='SAME') + b_conv1)
            l_pool1 = tf.nn.max_pool(l_conv1, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')
    
            tf.summary.image('x_input',x,max_outputs=10)
            tf.summary.histogram('W_con1',W_conv1)
            tf.summary.histogram('b_con1',b_conv1)
    
        with tf.name_scope('hidden2'):
            W_conv2 = weight_variable([5,5,32,64])
            b_conv2 = bias_variable([64])
            l_conv2 = tf.nn.relu(tf.nn.conv2d(l_pool1, W_conv2, strides=[1,1,1,1], padding='SAME')+b_conv2)
            l_pool2 = tf.nn.max_pool(l_conv2, ksize=[1,2,2,1],strides=[1,2,2,1], padding='SAME')
    
            tf.summary.histogram('W_con2', W_conv2)
            tf.summary.histogram('b_con2', b_conv2)
    
        with tf.name_scope('fc1'):
            W_fc1 = weight_variable([64*7*7, 1024])
            b_fc1 = bias_variable([1024])
            l_pool2_flat = tf.reshape(l_pool2, [-1, 64*7*7])
            l_fc1 = tf.nn.relu(tf.matmul(l_pool2_flat, W_fc1) + b_fc1)
            keep_prob = tf.placeholder(tf.float32)
            l_fc1_drop = tf.nn.dropout(l_fc1, keep_prob)
    
            tf.summary.histogram('W_fc1', W_fc1)
            tf.summary.histogram('b_fc1', b_fc1)
    
        with tf.name_scope('fc2'):
            W_fc2 = weight_variable([1024, 10])
            b_fc2 = bias_variable([10])
            y_conv = tf.matmul(l_fc1_drop, W_fc2) + b_fc2
    
            tf.summary.histogram('W_fc1', W_fc1)
            tf.summary.histogram('b_fc1', b_fc1)
    
        with tf.name_scope('train'):
            cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=y_conv, labels=y))
            train_step = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(cross_entropy)
            correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y, 1))
            accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    
            tf.summary.scalar('loss', cross_entropy)
            tf.summary.scalar('accuracy', accuracy)
    
    
    with tf.Session(graph=myGraph) as sess:
        sess.run(tf.global_variables_initializer())
        saver = tf.train.Saver()
    
        merged = tf.summary.merge_all()
        summary_writer = tf.summary.FileWriter('./mnistEven/', graph=sess.graph)
    
        for i in range(2000):
            batch = mnist.train.next_batch(50)
            #cross_entropy = -tf.reduce_sum(y_ * tf.log(y))
            _, loss_val = sess.run([train_step, cross_entropy],feed_dict={x_raw:batch[0], y:batch[1], keep_prob:0.5})
            if i%100 == 0:
                train_accuracy = accuracy.eval(feed_dict={x_raw:batch[0], y:batch[1], keep_prob:1.0})
                print('step %d training accuracy:%g'%(i, train_accuracy))
                print('loss = ' + str(loss_val))
                summary = sess.run(merged,feed_dict={x_raw:batch[0], y:batch[1], keep_prob:1.0})
                summary_writer.add_summary(summary,i)
    
        test_accuracy = accuracy.eval(feed_dict={x_raw:mnist.test.images, y:mnist.test.labels, keep_prob:1.0})
        print('test accuracy:%g' %test_accuracy)
    
        saver.save(sess,save_path='./model/mnistmodel',global_step=1)
    

    mnist_nlstm

    from tensorflow.examples.tutorials.mnist import input_data
    import tensorflow as tf
    
    def compute_accuracy(v_x, v_y):
        global pred
        #input v_x to nn and get the result with y_pre
        y_pre = sess.run(pred, feed_dict={x:v_x})
        #find how many right
        correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_y,1))
        #calculate average
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        #get input content
        result = sess.run(accuracy,feed_dict={x: v_x, y: v_y})
        return result
    
    def LSTM_cell():
        return tf.contrib.rnn.BasicLSTMCell(n_hidden_units, forget_bias=1.0, state_is_tuple=True)
    
    def Drop_lstm_cell():
        return tf.contrib.rnn.DropoutWrapper(LSTM_cell(), output_keep_prob=0.5)
    
    def Mul_lstm_cell():
        return tf.contrib.rnn.MultiRNNCell([Drop_lstm_cell() for _ in range(lstm_layer)], state_is_tuple=True)
    
    def RNN(X,weights,biases):
        # hidden layer for input
        X = tf.reshape(X, [-1, n_inputs])
        X_in = tf.matmul(X, weights['in']) + biases['in']
        X_in = tf.reshape(X_in, [-1,n_steps, n_hidden_units])
        
        # cell
        #lstm_cell = tf.contrib.rnn.BasicLSTMCell(n_hidden_units, forget_bias=1.0, state_is_tuple=True)
        lstm_cell = Mul_lstm_cell()
        _init_state = lstm_cell.zero_state(batch_size, dtype=tf.float32)
        outputs,states = tf.nn.dynamic_rnn(lstm_cell, X_in, initial_state=_init_state, time_major=False)
        
        #hidden layer for output as the final results
        #results = tf.matmul(states[2][1], weights['out']) + biases['out']
        # or
        outputs = tf.unstack(tf.transpose(outputs, [1,0,2]))
        results = tf.matmul(outputs[-1], weights['out']) + biases['out']
    
        return results
        
    
    #load mnist data
    mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
    
    # parameters init
    lstm_layer = 3
    l_r = 0.001
    training_iters = 100000
    batch_size = 128
    
    n_inputs = 28
    n_steps = 28
    n_hidden_units = 128
    n_classes = 10
    
    #define placeholder for input
    x = tf.placeholder(tf.float32, [None, n_steps, n_inputs])
    y = tf.placeholder(tf.float32, [None, n_classes])
    
    # define w and b
    weights = {
        'in': tf.Variable(tf.random_normal([n_inputs,n_hidden_units])),
        'out': tf.Variable(tf.random_normal([n_hidden_units,n_classes]))
    }
    biases = {
        'in': tf.Variable(tf.constant(0.1,shape=[n_hidden_units,])),
        'out': tf.Variable(tf.constant(0.1,shape=[n_classes,]))
    }
    
    pred = RNN(x, weights, biases)
    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred,labels=y))
    train_op = tf.train.AdamOptimizer(l_r).minimize(cost)
    
    correct_pred = tf.equal(tf.argmax(pred,1),tf.argmax(y,1))
    accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
    
    #init session
    sess = tf.Session()
    #init all variables
    sess.run(tf.global_variables_initializer())
    #start training
    
    # x_image,x_label = mnist.test.next_batch(500)
    # x_image = x_image.reshape([500, n_steps, n_inputs])
    
    for i in range(training_iters):
        #get batch to learn easily
        batch_x, batch_y = mnist.train.next_batch(batch_size)
        batch_x = batch_x.reshape([batch_size, n_steps, n_inputs])
        sess.run(train_op,feed_dict={x: batch_x, y: batch_y})
        if i % 50 == 0:
            print(sess.run(accuracy,feed_dict={x: batch_x, y: batch_y,}))
          #  print(sess.run(accuracy,feed_dict={x: x_image, y: x_label}))
    

    mnist_lstm

    from tensorflow.examples.tutorials.mnist import input_data
    import tensorflow as tf
    
    def RNN(X,weights,biases):
        # hidden layer for input
        X = tf.reshape(X, [-1, n_inputs])
        X_in = tf.matmul(X, weights['in']) + biases['in']
        X_in = tf.reshape(X_in, [-1,n_steps, n_hidden_units])
        
        # cell
        lstm_cell = tf.contrib.rnn.BasicLSTMCell(n_hidden_units, forget_bias=1.0, state_is_tuple=True)
        _init_state = lstm_cell.zero_state(batch_size, dtype=tf.float32)
        outputs,states = tf.nn.dynamic_rnn(lstm_cell, X_in, initial_state=_init_state, time_major=False)
        
        #hidden layer for output as the final results
        #results = tf.matmul(states[1], weights['out']) + biases['out']
        # or
        outputs = tf.unstack(tf.transpose(outputs, [1,0,2]))
        results = tf.matmul(outputs[-1], weights['out']) + biases['out']
    
        return results
        
    
    #load mnist data
    mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
    
    # parameters init
    l_r = 0.001
    training_iters = 100000
    batch_size = 128
    
    n_inputs = 28
    n_steps = 28
    n_hidden_units = 128
    n_classes = 10
    
    #define placeholder for input
    x = tf.placeholder(tf.float32, [None, n_steps, n_inputs])
    y = tf.placeholder(tf.float32, [None, n_classes])
    
    # define w and b
    weights = {
        'in': tf.Variable(tf.random_normal([n_inputs,n_hidden_units])),
        'out': tf.Variable(tf.random_normal([n_hidden_units,n_classes]))
    }
    biases = {
        'in': tf.Variable(tf.constant(0.1,shape=[n_hidden_units,])),
        'out': tf.Variable(tf.constant(0.1,shape=[n_classes,]))
    }
    
    pred = RNN(x, weights, biases)
    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred,labels=y))
    train_op = tf.train.AdamOptimizer(l_r).minimize(cost)
    
    correct_pred = tf.equal(tf.argmax(pred,1),tf.argmax(y,1))
    accuracy = tf.reduce_mean(tf.cast(correct_pred,tf.float32))
    
    #init session
    sess = tf.Session()
    #init all variables
    sess.run(tf.global_variables_initializer())
    #start training
    
    #for i in range(training_iters):
    for i in range(training_iters):
        #get batch to learn easily
        batch_x, batch_y = mnist.train.next_batch(batch_size)
        batch_x = batch_x.reshape([batch_size, n_steps, n_inputs])
        sess.run(train_op,feed_dict={x: batch_x, y: batch_y})
        if i % 50 == 0:
            print(sess.run(accuracy,feed_dict={x: batch_x, y: batch_y,}))
    #test_data = mnist.test.images.reshape([-1, n_steps, n_inputs])
    #test_label = mnist.test.labels
    #print("Testing Accuracy: ", sess.run(accuracy, feed_dict={x: test_data, y: test_label}))
    

    mnist_cnn

    from tensorflow.examples.tutorials.mnist import input_data
    import tensorflow as tf
    
    def compute_accuracy(v_x, v_y):
        global prediction
        y_pre = sess.run(prediction, feed_dict={x:v_x, keep_prob:1})
        correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_y,1))
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        result = sess.run(accuracy,feed_dict={x: v_x, y: v_y, keep_prob:1})
        return result
    
    def weight_variable(shape):
        initial = tf.truncated_normal(shape, stddev=0.1)
        return tf.Variable(initial)
        
    def bias_variable(shape):
        initial = tf.constant(0.1, shape=shape)
        return tf.Variable(initial)
    
    def conv2d(x, W):
        # strides=[1,x_movement,y_movement,1]
        return tf.nn.conv2d(x, W, strides=[1,1,1,1], padding='SAME')
    
    def max_pool_2x2(x):
        return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')
    
    # load mnist data
    mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
    
    x = tf.placeholder(tf.float32, [None,784])
    y = tf.placeholder(tf.float32, [None,10])
    keep_prob = tf.placeholder(tf.float32)
    # reshape(data you want to reshape, [-1, reshape_height, reshape_weight, imagine layers]) image layers=1 when the imagine is in white and black, =3 when the imagine is RGB 
    x_image = tf.reshape(x, [-1,28,28,1])
    
    # ********************** conv1 *********************************
    # transfer a 5*5*1 imagine into 32 sequence
    W_conv1 = weight_variable([5,5,1,32])
    b_conv1 = bias_variable([32])
    # input a imagine and make a 5*5*1 to 32 with stride=1*1, and activate with relu
    h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) # output size 28*28*32
    h_pool1 = max_pool_2x2(h_conv1) # output size 14*14*32
    
    # ********************** conv2 *********************************
    # transfer a 5*5*32 imagine into 64 sequence
    W_conv2 = weight_variable([5,5,32,64])
    b_conv2 = bias_variable([64])
    # input a imagine and make a 5*5*32 to 64 with stride=1*1, and activate with relu
    h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) # output size 14*14*64
    h_pool2 = max_pool_2x2(h_conv2) # output size 7*7*64
    
    # ********************* func1 layer *********************************
    W_fc1 = weight_variable([7*7*64, 1024])
    b_fc1 = bias_variable([1024])
    # reshape the image from 7,7,64 into a flat (7*7*64)
    h_pool2_flat = tf.reshape(h_pool2, [-1,7*7*64])
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
    h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob)
    
    # ********************* func2 layer *********************************
    W_fc2 = weight_variable([1024, 10])
    b_fc2 = bias_variable([10])
    prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
    
    
    # calculate the loss
    cross_entropy = tf.reduce_mean(-tf.reduce_sum(y*tf.log(prediction), reduction_indices=[1]))
    # use Gradientdescentoptimizer
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
    # init session
    sess = tf.Session()
    sess.run(tf.global_variables_initializer())
    
    for i in range(1000):
        batch_x, batch_y = mnist.train.next_batch(100)
        sess.run(train_step,feed_dict={x: batch_x, y: batch_y, keep_prob: 0.5})
        if i % 50 == 0:
            print(compute_accuracy(mnist.test.images, mnist.test.labels))
    

    mnist_cnn_rnn

    from tensorflow.examples.tutorials.mnist import input_data
    import tensorflow as tf
    
    lr = 0.001
    training_iters = 100000
    batch_size = 128
    n_input = 49
    n_steps = 64
    n_hidden_units = 128
    n_classes = 10
    
    def compute_accuracy(v_x, v_y):
        global prediction
        y_pre = sess.run(prediction, feed_dict={x:v_x, keep_prob:1})
        correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_y,1))
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        result = sess.run(accuracy,feed_dict={x: v_x, y: v_y, keep_prob:1})
        return result
    
    def weight_variable(shape):
        initial = tf.truncated_normal(shape, stddev=0.1)
        return tf.Variable(initial)
        
    def bias_variable(shape):
        initial = tf.constant(0.1, shape=shape)
        return tf.Variable(initial)
    
    def conv2d(x, W):
        # strides=[1,x_movement,y_movement,1]
        return tf.nn.conv2d(x, W, strides=[1,1,1,1], padding='SAME')
    
    def max_pool_2x2(x):
        return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')
    
    def conv_pool_layer(X, img_len, img_hi, out_seq):
        W = weight_variable([img_len, img_len, img_hi, out_seq])
        b = bias_variable([out_seq])
        h_conv = tf.nn.relu(conv2d(X, W) + b)
        return max_pool_2x2(h_conv)
    
    def lstm(X):
        lstm_cell = tf.contrib.rnn.BasicLSTMCell(n_hidden_units, forget_bias=1.0, state_is_tuple=True)
        _init_state = lstm_cell.zero_state(batch_size, dtype=tf.float32)
        outputs,states = tf.nn.dynamic_rnn(lstm_cell, X, initial_state=_init_state, time_major=False)
        W = weight_variable([n_hidden_units, n_classes])
        b = bias_variable([n_classes])
        outputs = tf.unstack(tf.transpose(outputs, [1,0,2]))
        results = tf.matmul(outputs[-1], W) + b
        return results
    
    # load mnist data
    mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
    
    x = tf.placeholder(tf.float32, [None,784])
    y = tf.placeholder(tf.float32, [None,10])
    keep_prob = tf.placeholder(tf.float32)
    # reshape(data you want to reshape, [-1, reshape_height, reshape_weight, imagine layers]) image layers=1 when the imagine is in white and black, =3 when the imagine is RGB 
    x_image = tf.reshape(x, [-1,28,28,1])
    
    # ********************** conv1 *********************************
    # transfer a 5*5*1 imagine into 32 sequence
    #W_conv1 = weight_variable([5,5,1,32])
    #b_conv1 = bias_variable([32])
    # input a imagine and make a 5*5*1 to 32 with stride=1*1, and activate with relu
    #h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) # output size 28*28*32
    #h_pool1 = max_pool_2x2(h_conv1) # output size 14*14*32
    h_pool1 = conv_pool_layer(x_image, 5, 1, 32)
    
    # ********************** conv2 *********************************
    # transfer a 5*5*32 imagine into 64 sequence
    #W_conv2 = weight_variable([5,5,32,64])
    #b_conv2 = bias_variable([64])
    # input a imagine and make a 5*5*32 to 64 with stride=1*1, and activate with relu
    #h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) # output size 14*14*64
    #h_pool2 = max_pool_2x2(h_conv2) # output size 7*7*64
    h_pool2 = conv_pool_layer(h_pool1, 5, 32, 64)
    
    # reshape data
    X_in = tf.reshape(h_pool2, [-1,49,64])
    X_in = tf.transpose(X_in, [0,2,1])
    
    #put into a lstm layer
    prediction = lstm(X_in)
    # ********************* func1 layer *********************************
    #W_fc1 = weight_variable([7*7*64, 1024])
    #b_fc1 = bias_variable([1024])
    # reshape the image from 7,7,64 into a flat (7*7*64)
    #h_pool2_flat = tf.reshape(h_pool2, [-1,7*7*64])
    #h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
    #h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob)
    
    # ********************* func2 layer *********************************
    #W_fc2 = weight_variable([1024, 10])
    #b_fc2 = bias_variable([10])
    #prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
    
    
    # calculate the loss
    cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y))
    # use Gradientdescentoptimizer
    train_step = tf.train.AdamOptimizer(lr).minimize(cross_entropy)
    
    correct_pred = tf.equal(tf.argmax(prediction,1),tf.argmax(y,1))
    accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
    # init session
    sess = tf.Session()
    sess.run(tf.global_variables_initializer())
    
    for i in range(training_iters):
        batch_x, batch_y = mnist.train.next_batch(batch_size)
        sess.run(train_step,feed_dict={x: batch_x, y: batch_y, keep_prob: 0.5})
        if i % 50 == 0:
            print(sess.run(accuracy,feed_dict={x: batch_x, y: batch_y,}))
    

    mnist_bi_lstm

    from tensorflow.examples.tutorials.mnist import input_data
    import tensorflow as tf
    
    def compute_accuracy(v_x, v_y):
        global pred
        #input v_x to nn and get the result with y_pre
        y_pre = sess.run(pred, feed_dict={x:v_x})
        #find how many right
        correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_y,1))
        #calculate average
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        #get input content
        result = sess.run(accuracy,feed_dict={x: v_x, y: v_y})
        return result
    
    def Bi_lstm(X):
        lstm_f_cell = tf.contrib.rnn.BasicLSTMCell(n_hidden_units, forget_bias=1.0, state_is_tuple=True)
        lstm_b_cell = tf.contrib.rnn.BasicLSTMCell(n_hidden_units, forget_bias=1.0, state_is_tuple=True)
        return tf.contrib.rnn.static_bidirectional_rnn(lstm_f_cell, lstm_b_cell, X, dtype=tf.float32)
    
    def RNN(X,weights,biases):
        # hidden layer for input
        X = tf.reshape(X, [-1, n_inputs])
        X_in = tf.matmul(X, weights['in']) + biases['in']
    
        #reshape data put into bi-lstm cell
        X_in = tf.reshape(X_in, [-1,n_steps, n_hidden_units])
        X_in = tf.transpose(X_in, [1,0,2])
        X_in = tf.reshape(X_in, [-1, n_hidden_units])
        X_in = tf.split(X_in, n_steps)
        outputs, _, _ = Bi_lstm(X_in)
        
        #hidden layer for output as the final results
        results = tf.matmul(outputs[-1], weights['out']) + biases['out']
    
        return results
        
    
    #load mnist data
    mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
    
    # parameters init
    l_r = 0.001
    training_iters = 100000
    batch_size = 128
    
    n_inputs = 28
    n_steps = 28
    n_hidden_units = 128
    n_classes = 10
    
    #define placeholder for input
    x = tf.placeholder(tf.float32, [None, n_steps, n_inputs])
    y = tf.placeholder(tf.float32, [None, n_classes])
    
    # define w and b
    weights = {
        'in': tf.Variable(tf.random_normal([n_inputs,n_hidden_units])),
        'out': tf.Variable(tf.random_normal([2*n_hidden_units,n_classes]))
    }
    biases = {
        'in': tf.Variable(tf.constant(0.1,shape=[n_hidden_units,])),
        'out': tf.Variable(tf.constant(0.1,shape=[n_classes,]))
    }
    
    pred = RNN(x, weights, biases)
    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred,labels=y))
    train_op = tf.train.AdamOptimizer(l_r).minimize(cost)
    
    correct_pred = tf.equal(tf.argmax(pred,1),tf.argmax(y,1))
    accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
    
    #init session
    sess = tf.Session()
    #init all variables
    sess.run(tf.global_variables_initializer())
    #start training
    
    # x_image,x_label = mnist.test.next_batch(500)
    # x_image = x_image.reshape([500, n_steps, n_inputs])
    
    for i in range(500):
        #get batch to learn easily
        batch_x, batch_y = mnist.train.next_batch(batch_size)
        batch_x = batch_x.reshape([batch_size, n_steps, n_inputs])
        sess.run(train_op,feed_dict={x: batch_x, y: batch_y})
        if i % 50 == 0:
            print(sess.run(accuracy,feed_dict={x: batch_x, y: batch_y,}))
    test_data = mnist.test.images.reshape([-1, n_steps, n_inputs])
    test_label = mnist.test.labels
    #print("Testing Accuracy:", sess.run(accuracy, feed_dict={x: test_data, y: test_label}))
    print("Testing Accuracy: ", compute_accuracy(test_data, test_label))
    

    mnist.ipynb

    # encoding=utf-8
    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
    
    def weight_variable(shape):
        initial = tf.truncated_normal(shape, stddev=0.1)
        return tf.Variable(initial)
    
    def bias_variable(shape):
        initial = tf.constant(0.1, shape=shape)
        return tf.Variable(initial)
    
    myGraph = tf.Graph()
    with myGraph.as_default():
        with tf.name_scope('inputsAndLabels'):
            x_raw = tf.placeholder(tf.float32, shape=[None, 784])
            y = tf.placeholder(tf.float32, shape=[None, 10])
    
        with tf.name_scope('hidden1'):
            x = tf.reshape(x_raw, shape=[-1,28,28,1])
            W_conv1 = weight_variable([5,5,1,32])
            b_conv1 = bias_variable([32])
            l_conv1 = tf.nn.relu(tf.nn.conv2d(x,W_conv1, strides=[1,1,1,1],padding='SAME') + b_conv1)
            l_pool1 = tf.nn.max_pool(l_conv1, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')
    
            tf.summary.image('x_input',x,max_outputs=10)
            tf.summary.histogram('W_con1',W_conv1)
            tf.summary.histogram('b_con1',b_conv1)
    
        with tf.name_scope('hidden2'):
            W_conv2 = weight_variable([5,5,32,64])
            b_conv2 = bias_variable([64])
            l_conv2 = tf.nn.relu(tf.nn.conv2d(l_pool1, W_conv2, strides=[1,1,1,1], padding='SAME')+b_conv2)
            l_pool2 = tf.nn.max_pool(l_conv2, ksize=[1,2,2,1],strides=[1,2,2,1], padding='SAME')
    
            tf.summary.histogram('W_con2', W_conv2)
            tf.summary.histogram('b_con2', b_conv2)
    
        with tf.name_scope('fc1'):
            W_fc1 = weight_variable([64*7*7, 1024])
            b_fc1 = bias_variable([1024])
            l_pool2_flat = tf.reshape(l_pool2, [-1, 64*7*7])
            l_fc1 = tf.nn.relu(tf.matmul(l_pool2_flat, W_fc1) + b_fc1)
            keep_prob = tf.placeholder(tf.float32)
            l_fc1_drop = tf.nn.dropout(l_fc1, keep_prob)
    
            tf.summary.histogram('W_fc1', W_fc1)
            tf.summary.histogram('b_fc1', b_fc1)
    
        with tf.name_scope('fc2'):
            W_fc2 = weight_variable([1024, 10])
            b_fc2 = bias_variable([10])
            y_conv = tf.matmul(l_fc1_drop, W_fc2) + b_fc2
    
            tf.summary.histogram('W_fc1', W_fc1)
            tf.summary.histogram('b_fc1', b_fc1)
    
        with tf.name_scope('train'):
            cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=y_conv, labels=y))
            train_step = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(cross_entropy)
            correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y, 1))
            accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    
            tf.summary.scalar('loss', cross_entropy)
            tf.summary.scalar('accuracy', accuracy)
    
    
    with tf.Session(graph=myGraph) as sess:
        sess.run(tf.global_variables_initializer())
        saver = tf.train.Saver()
    
        merged = tf.summary.merge_all()
        summary_writer = tf.summary.FileWriter('./mnistEven/', graph=sess.graph)
    
        for i in range(10001):
            batch = mnist.train.next_batch(50)
            sess.run(train_step,feed_dict={x_raw:batch[0], y:batch[1], keep_prob:0.5})
            if i%100 == 0:
                train_accuracy = accuracy.eval(feed_dict={x_raw:batch[0], y:batch[1], keep_prob:1.0})
                print('step %d training accuracy:%g'%(i, train_accuracy))
    
                summary = sess.run(merged,feed_dict={x_raw:batch[0], y:batch[1], keep_prob:1.0})
                summary_writer.add_summary(summary,i)
    
        test_accuracy = accuracy.eval(feed_dict={x_raw:mnist.test.images, y:mnist.test.labels, keep_prob:1.0})
        print('test accuracy:%g' %test_accuracy)
    
        saver.save(sess,save_path='./model/mnistmodel',global_step=1)
    


    
    Warning (from warnings module):
      File "D:AnacondaAnconda_01libsite-packagesh5py\__init__.py", line 36
        from ._conv import register_converters as _register_converters
    FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.
    WARNING:tensorflow:From E:Python shellhugeng007_01_tail recursion.py:4: read_data_sets (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
    Instructions for updating:
    Please use alternatives such as official/mnist/dataset.py from tensorflow/models.
    WARNING:tensorflow:From D:AnacondaAnconda_01libsite-packages	ensorflowcontriblearnpythonlearndatasetsmnist.py:260: maybe_download (from tensorflow.contrib.learn.python.learn.datasets.base) is deprecated and will be removed in a future version.
    Instructions for updating:
    Please write your own downloading logic.
    WARNING:tensorflow:From D:AnacondaAnconda_01libsite-packages	ensorflowcontriblearnpythonlearndatasetsase.py:252: _internal_retry.<locals>.wrap.<locals>.wrapped_fn (from tensorflow.contrib.learn.python.learn.datasets.base) is deprecated and will be removed in a future version.
    Instructions for updating:
    Please use urllib or similar directly.
    
    ========== RESTART: E:Python shellhugeng007_01_tail recursion.py ==========
    
    Warning (from warnings module):
      File "D:AnacondaAnconda_01libsite-packagesh5py\__init__.py", line 36
        from ._conv import register_converters as _register_converters
    FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.
    WARNING:tensorflow:From E:Python shellhugeng007_01_tail recursion.py:4: read_data_sets (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
    Instructions for updating:
    Please use alternatives such as official/mnist/dataset.py from tensorflow/models.
    WARNING:tensorflow:From D:AnacondaAnconda_01libsite-packages	ensorflowcontriblearnpythonlearndatasetsmnist.py:260: maybe_download (from tensorflow.contrib.learn.python.learn.datasets.base) is deprecated and will be removed in a future version.
    Instructions for updating:
    Please write your own downloading logic.
    WARNING:tensorflow:From D:AnacondaAnconda_01libsite-packages	ensorflowcontriblearnpythonlearndatasetsase.py:252: _internal_retry.<locals>.wrap.<locals>.wrapped_fn (from tensorflow.contrib.learn.python.learn.datasets.base) is deprecated and will be removed in a future version.
    Instructions for updating:
    Please use urllib or similar directly.
    Traceback (most recent call last):
      File "D:AnacondaAnconda_01liburllib
    equest.py", line 1318, in do_open
        encode_chunked=req.has_header('Transfer-encoding'))
      File "D:AnacondaAnconda_01libhttpclient.py", line 1239, in request
        self._send_request(method, url, body, headers, encode_chunked)
      File "D:AnacondaAnconda_01libhttpclient.py", line 1285, in _send_request
        self.endheaders(body, encode_chunked=encode_chunked)
      File "D:AnacondaAnconda_01libhttpclient.py", line 1234, in endheaders
        self._send_output(message_body, encode_chunked=encode_chunked)
      File "D:AnacondaAnconda_01libhttpclient.py", line 1026, in _send_output
        self.send(msg)
      File "D:AnacondaAnconda_01libhttpclient.py", line 964, in send
        self.connect()
      File "D:AnacondaAnconda_01libhttpclient.py", line 1392, in connect
        super().connect()
      File "D:AnacondaAnconda_01libhttpclient.py", line 936, in connect
        (self.host,self.port), self.timeout, self.source_address)
      File "D:AnacondaAnconda_01libsocket.py", line 724, in create_connection
        raise err
      File "D:AnacondaAnconda_01libsocket.py", line 713, in create_connection
        sock.connect(sa)
    TimeoutError: [WinError 10060] 由于连接方在一段时间后没有正确答复或连接的主机没有反应,连接尝试失败。
    
    During handling of the above exception, another exception occurred:
    
    Traceback (most recent call last):
      File "E:Python shellhugeng007_01_tail recursion.py", line 4, in <module>
        mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
      File "D:AnacondaAnconda_01libsite-packages	ensorflowpythonutildeprecation.py", line 272, in new_func
        return func(*args, **kwargs)
      File "D:AnacondaAnconda_01libsite-packages	ensorflowcontriblearnpythonlearndatasetsmnist.py", line 260, in read_data_sets
        source_url + TRAIN_IMAGES)
      File "D:AnacondaAnconda_01libsite-packages	ensorflowpythonutildeprecation.py", line 272, in new_func
        return func(*args, **kwargs)
      File "D:AnacondaAnconda_01libsite-packages	ensorflowcontriblearnpythonlearndatasetsase.py", line 252, in maybe_download
        temp_file_name, _ = urlretrieve_with_retry(source_url)
      File "D:AnacondaAnconda_01libsite-packages	ensorflowpythonutildeprecation.py", line 272, in new_func
        return func(*args, **kwargs)
      File "D:AnacondaAnconda_01libsite-packages	ensorflowcontriblearnpythonlearndatasetsase.py", line 205, in wrapped_fn
        return fn(*args, **kwargs)
      File "D:AnacondaAnconda_01libsite-packages	ensorflowcontriblearnpythonlearndatasetsase.py", line 233, in urlretrieve_with_retry
        return urllib.request.urlretrieve(url, filename)
      File "D:AnacondaAnconda_01liburllib
    equest.py", line 248, in urlretrieve
        with contextlib.closing(urlopen(url, data)) as fp:
      File "D:AnacondaAnconda_01liburllib
    equest.py", line 223, in urlopen
        return opener.open(url, data, timeout)
      File "D:AnacondaAnconda_01liburllib
    equest.py", line 526, in open
        response = self._open(req, data)
      File "D:AnacondaAnconda_01liburllib
    equest.py", line 544, in _open
        '_open', req)
      File "D:AnacondaAnconda_01liburllib
    equest.py", line 504, in _call_chain
        result = func(*args)
      File "D:AnacondaAnconda_01liburllib
    equest.py", line 1361, in https_open
        context=self._context, check_hostname=self._check_hostname)
      File "D:AnacondaAnconda_01liburllib
    equest.py", line 1320, in do_open
        raise URLError(err)
    urllib.error.URLError: <urlopen error [WinError 10060] 由于连接方在一段时间后没有正确答复或连接的主机没有反应,连接尝试失败。>
    
    WARNING:tensorflow:From <ipython-input-4-a36400cc0616>:4: read_data_sets (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
    Instructions for updating:
    Please use alternatives such as official/mnist/dataset.py from tensorflow/models.
    WARNING:tensorflow:From /home/binder/.pyenv/versions/3.6.5/lib/python3.6/site-packages/tensorflow/contrib/learn/python/learn/datasets/mnist.py:260: maybe_download (from tensorflow.contrib.learn.python.learn.datasets.base) is deprecated and will be removed in a future version.
    Instructions for updating:
    Please write your own downloading logic.
    WARNING:tensorflow:From /home/binder/.pyenv/versions/3.6.5/lib/python3.6/site-packages/tensorflow/contrib/learn/python/learn/datasets/mnist.py:262: extract_images (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
    Instructions for updating:
    Please use tf.data to implement this functionality.
    Extracting MNIST_data/train-images-idx3-ubyte.gz
    WARNING:tensorflow:From /home/binder/.pyenv/versions/3.6.5/lib/python3.6/site-packages/tensorflow/contrib/learn/python/learn/datasets/mnist.py:267: extract_labels (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
    Instructions for updating:
    Please use tf.data to implement this functionality.
    Extracting MNIST_data/train-labels-idx1-ubyte.gz
    WARNING:tensorflow:From /home/binder/.pyenv/versions/3.6.5/lib/python3.6/site-packages/tensorflow/contrib/learn/python/learn/datasets/mnist.py:110: dense_to_one_hot (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
    Instructions for updating:
    Please use tf.one_hot on tensors.
    Extracting MNIST_data/t10k-images-idx3-ubyte.gz
    Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
    WARNING:tensorflow:From /home/binder/.pyenv/versions/3.6.5/lib/python3.6/site-packages/tensorflow/contrib/learn/python/learn/datasets/mnist.py:290: DataSet.__init__ (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
    Instructions for updating:
    Please use alternatives such as official/mnist/dataset.py from tensorflow/models.
    WARNING:tensorflow:From <ipython-input-4-a36400cc0616>:60: softmax_cross_entropy_with_logits (from tensorflow.python.ops.nn_ops) is deprecated and will be removed in a future version.
    Instructions for updating:
    
    Future major versions of TensorFlow will allow gradients to flow
    into the labels input on backprop by default.
    
    See @{tf.nn.softmax_cross_entropy_with_logits_v2}.
    
    step 0 training accuracy:0.08
    step 100 training accuracy:0.9
    step 200 training accuracy:0.94
    step 300 training accuracy:0.94
    step 400 training accuracy:0.94
    step 500 training accuracy:0.86
    step 600 training accuracy:0.96
    step 700 training accuracy:0.92
    step 800 training accuracy:0.96
    step 900 training accuracy:0.98
    step 1000 training accuracy:0.96
    step 1100 training accuracy:0.96
    step 1200 training accuracy:1
    step 1300 training accuracy:0.96
    step 1400 training accuracy:0.98
    step 1500 training accuracy:0.98
    step 1600 training accuracy:0.98
    step 1700 training accuracy:1
    step 1800 training accuracy:0.96
    step 1900 training accuracy:1
    step 2000 training accuracy:1
    step 2100 training accuracy:0.94
    step 2200 training accuracy:1
    step 2300 training accuracy:1
    step 2400 training accuracy:1
    step 2500 training accuracy:1
    step 2600 training accuracy:0.98
    step 2700 training accuracy:0.96
    step 2800 training accuracy:1
    step 2900 training accuracy:1
    step 3000 training accuracy:0.98
    step 3100 training accuracy:0.96
    step 3200 training accuracy:0.96
    step 3300 training accuracy:1
    step 3400 training accuracy:0.98
    step 3500 training accuracy:0.98
    step 3600 training accuracy:0.96
    step 3700 training accuracy:0.96
    step 3800 training accuracy:0.96
    step 3900 training accuracy:0.98
    step 4000 training accuracy:0.98
    step 4100 training accuracy:0.98
    step 4200 training accuracy:1
    step 4300 training accuracy:0.98
    step 4400 training accuracy:0.98
    step 4500 training accuracy:1
    step 4600 training accuracy:0.98
    step 4700 training accuracy:1
    step 4800 training accuracy:1
    step 4900 training accuracy:0.98
    step 5000 training accuracy:0.98
    step 5100 training accuracy:1
    step 5200 training accuracy:1
    step 5300 training accuracy:1
    step 5400 training accuracy:1
    step 5500 training accuracy:0.98
    step 5600 training accuracy:1
    step 5700 training accuracy:1
    step 5800 training accuracy:0.98
    step 5900 training accuracy:0.98
    step 6000 training accuracy:1
    step 6100 training accuracy:1
    step 6200 training accuracy:0.96
    step 6300 training accuracy:1
    step 6400 training accuracy:1
    step 6500 training accuracy:1
    step 6600 training accuracy:0.96
    step 6700 training accuracy:1
    step 6800 training accuracy:1
    step 6900 training accuracy:1
    step 7000 training accuracy:1
    step 7100 training accuracy:1
    step 7200 training accuracy:1
    step 7300 training accuracy:1
    step 7400 training accuracy:1
    step 7500 training accuracy:1
    step 7600 training accuracy:1
    step 7700 training accuracy:1
    step 7800 training accuracy:0.98
    step 7900 training accuracy:1
    step 8000 training accuracy:1
    step 8100 training accuracy:1
    step 8200 training accuracy:1
    step 8300 training accuracy:1
    step 8400 training accuracy:1
    step 8500 training accuracy:1
    step 8600 training accuracy:0.98
    step 8700 training accuracy:1
    step 8800 training accuracy:0.98
    step 8900 training accuracy:1
    step 9000 training accuracy:1
    step 9100 training accuracy:1
    step 9200 training accuracy:0.98
    step 9300 training accuracy:1
    step 9400 training accuracy:1
    step 9500 training accuracy:1
    step 9600 training accuracy:1
    step 9700 training accuracy:1
    step 9800 training accuracy:1
    step 9900 training accuracy:1
    step 10000 training accuracy:1
    
    
  • 相关阅读:
    双链表( 初始化,建立,插入,查找,删除 )
    单链表(程序员宝典)
    单链表(建立、插入、删除、打印)
    Hive- 表
    Spark- 性能优化
    Spark- Checkpoint原理剖析
    Spark- 优化后的 shuffle 操作原理剖析
    Spark- Spark普通Shuffle操作的原理剖析
    Spark- Spark内核架构原理和Spark架构深度剖析
    Spark- Spark基本工作原理
  • 原文地址:https://www.cnblogs.com/hugeng007/p/9489636.html
Copyright © 2011-2022 走看看