zoukankan      html  css  js  c++  java
  • POJ1734 Sightseeing trip

    Sightseeing trip
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 7114   Accepted: 2708   Special Judge

    Description

    There is a travel agency in Adelton town on Zanzibar island. It has decided to offer its clients, besides many other attractions, sightseeing the town. To earn as much as possible from this attraction, the agency has accepted a shrewd decision: it is necessary to find the shortest route which begins and ends at the same place. Your task is to write a program which finds such a route.

    In the town there are N crossing points numbered from 1 to N and M two-way roads numbered from 1 to M. Two crossing points can be connected by multiple roads, but no road connects a crossing point with itself. Each sightseeing route is a sequence of road numbers y_1, ..., y_k, k>2. The road y_i (1<=i<=k-1) connects crossing points x_i and x_{i+1}, the road y_k connects crossing points x_k and x_1. All the numbers x_1,...,x_k should be different.The length of the sightseeing route is the sum of the lengths of all roads on the sightseeing route, i.e. L(y_1)+L(y_2)+...+L(y_k) where L(y_i) is the length of the road y_i (1<=i<=k). Your program has to find such a sightseeing route, the length of which is minimal, or to specify that it is not possible,because there is no sightseeing route in the town.

    Input

    The first line of input contains two positive integers: the number of crossing points N<=100 and the number of roads M<=10000. Each of the next M lines describes one road. It contains 3 positive integers: the number of its first crossing point, the number of the second one, and the length of the road (a positive integer less than 500).

    Output

    There is only one line in output. It contains either a string 'No solution.' in case there isn't any sightseeing route, or it contains the numbers of all crossing points on the shortest sightseeing route in the order how to pass them (i.e. the numbers x_1 to x_k from our definition of a sightseeing route), separated by single spaces. If there are multiple sightseeing routes of the minimal length, you can output any one of them.

    Sample Input

    5 7
    1 4 1
    1 3 300
    3 1 10
    1 2 16
    2 3 100
    2 5 15
    5 3 20
    

    Sample Output

    1 3 5 2
    

    Source

     
    【题解】
    Floyd求最小环。
    最小环里一定存在一个编号最大的节点。
    于是我们只需要在k这层循环开始前,看一下
    过点k和小于k的点有没有环即可
    看k能到的点i,枚举i能到的点j,若j能到k,则
    形成最小简单环(因为边权为正,不可能有负环)
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstdlib>
     4 #include <cstring>
     5 #define min(a, b) ((a) < (b) ? (a) : (b))
     6 #define max(a, b) ((a) > (b) ? (a) : (b))
     7 
     8 inline void read(long long &x)
     9 {
    10     x = 0;char ch = getchar(), c = ch;
    11     while(ch < '0' || ch > '9')c = ch, ch = getchar();
    12     while(ch <= '9' && ch >= '0')x = x * 10 + ch - '0', ch = getchar();
    13     if(c == '-')x = -x; 
    14 } 
    15 
    16 const long long INF = 0x3f3f3f3f;
    17 const long long MAXN = 500 + 10;
    18 const long long MAXM = 20000 + 10;
    19 
    20 long long n,m,g[MAXN][MAXN], w[MAXN][MAXN], ans, zhuan[MAXN][MAXN], l,r,mid, fangan[MAXN], tot;
    21 
    22 void dfs(long long s, long long t)
    23 {
    24     if(s == t || !zhuan[s][t])
    25         return;
    26     dfs(s, zhuan[s][t]);
    27     fangan[++ tot] = zhuan[s][t];
    28     dfs(zhuan[s][t], t);
    29 }
    30 
    31 int main()
    32 {
    33     while(scanf("%d %d", &n, &m) != EOF) 
    34     { 
    35         ans = INF;
    36         memset(g, 0x2, sizeof(g));
    37         memset(w, 0x2, sizeof(w));
    38         memset(zhuan, 0, sizeof(zhuan));
    39         for(register long long i = 1;i <= m;++ i)
    40         {
    41             long long tmp1, tmp2;
    42             read(tmp1), read(tmp2);
    43             read(g[tmp1][tmp2]);
    44             g[tmp2][tmp1] = w[tmp1][tmp2] = w[tmp2][tmp1] = g[tmp1][tmp2];
    45         }
    46         for(register long long k = 1;k <= n;++ k)
    47         {
    48             for(register long long i = 1;i < k;++ i)
    49                 for(register long long j = 1;j < k;++ j)
    50                 {
    51                     if(i == j) continue;
    52                     if(ans > w[k][i] + g[i][j] + w[j][k])
    53                     {
    54                         ans = w[k][i] + g[i][j] + w[j][k], l = i, r = j, mid = k;
    55                         tot = 0;fangan[++tot] = mid;fangan[++tot] = l;dfs(l, r);fangan[++tot] = r;
    56                     }
    57                 }
    58             for(register long long i = 1;i <= n;++ i)
    59                 for(register long long j = 1;j <= n;++ j)
    60                     if(g[i][j] > g[i][k] + g[k][j])
    61                         g[i][j] =  g[i][k] + g[k][j], zhuan[i][j] = k;
    62         }
    63         if(ans >= INF)
    64             printf("No solution.");
    65         else 
    66             for(register long long i = 1;i <= tot;++ i)
    67                 printf("%lld ", fangan[i]);
    68         putchar('
    ');
    69     } 
    70     return 0;
    71 }
    POJ1734
  • 相关阅读:
    最近公共祖先LCA Tarjan 离线算法
    HDU 2586 How far away? LCA 转化成RMQ
    最近公共祖先 Least Common Ancestors(LCA)算法 --- 与RMQ问题的转换
    RMQ ---- ST(Sparse Table)算法
    二维计算几何系列(一) -------- 数据结构
    Goalng基础语法-输入和输出
    Golang基础语法-运算符
    Golang基础语法-数据类型
    Golang基础语法-常量
    Golang基本语法-变量
  • 原文地址:https://www.cnblogs.com/huibixiaoxing/p/7602666.html
Copyright © 2011-2022 走看看