zoukankan      html  css  js  c++  java
  • POJ3579 Median

    Median
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 8371   Accepted: 2911

    Description

    Given N numbers, X1, X2, ... , XN, let us calculate the difference of every pair of numbers: ∣Xi - Xj∣ (1 ≤ i j N). We can get C(N,2) differences through this work, and now your task is to find the median of the differences as quickly as you can!

    Note in this problem, the median is defined as the (m/2)-th  smallest number if m,the amount of the differences, is even. For example, you have to find the third smallest one in the case of m = 6.

    Input

    The input consists of several test cases.
    In each test case, N will be given in the first line. Then N numbers are given, representing X1, X2, ... , XN, ( Xi ≤ 1,000,000,000  3 ≤ N ≤ 1,00,000 )

    Output

    For each test case, output the median in a separate line.

    Sample Input

    4
    1 3 2 4
    3
    1 10 2
    

    Sample Output

    1
    8

    Source

     
     
    【题解】
    二分中位数,将原数列排序,不难发现中位数配对数具有单调性,
    即对于降序序列S,其中一个数Sp若Sl~Sr内的数与Sp差均小于ans,
    则Sp+1与Sl~Sr内的数与Sp的差也一定小于ans,尺取法即可
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstdlib>
     4 #include <cstring>
     5 #include <algorithm> 
     6 #define max(a, b) ((a) > (b) ? (a) : (b)) 
     7 #define min(a, b) ((a) < (b) ? (a) : (b))
     8 
     9 inline void read(long long &x)
    10 {
    11     x = 0;char ch = getchar(), c = ch;
    12     while(ch < '0' || ch > '9')c = ch, ch = getchar();
    13     while(ch <= '9' && ch >= '0')x = x * 10 + ch - '0', ch = getchar();
    14     if(c == '-')x = -x;
    15 }
    16 
    17 const long long MAXN = 100000 + 10;
    18 
    19 long long n,num[MAXN];
    20 
    21 long long check(long long ans)
    22 {
    23     long long tot = 0;
    24     long long r = 2;
    25     for(register long long l = 1;l <= n;++ l)
    26     {
    27         while(num[r] - num[l] <= ans && r <= n)++ r;
    28         tot += r - l - 1;
    29     }
    30     if(tot >= (n * (n - 1)/2 + 1)/2 )return 1;
    31     else return 0;
    32 }
    33 
    34 int main()
    35 {
    36     while(scanf("%lld", &n) != EOF)
    37     {
    38         long long ma = -1;
    39         for(register long long i = 1;i <= n;++ i) read(num[i]), ma = max(ma, num[i]);
    40         std::sort(num + 1, num + 1 + n);
    41         long long l = 1, r = ma, ans = 0;
    42         while(l <= r)
    43         {
    44             long long mid = (l + r) >> 1;
    45             if(check(mid))ans = mid, r = mid - 1;
    46             else  l = mid + 1;
    47         }
    48         printf("%lld
    ", ans);
    49     }
    50     return 0;
    51 } 
    POJ2579
     
  • 相关阅读:
    现代操作系统:原理与实现配套实验ChCorelab02
    损失函数:交叉熵
    什么是 AWS IoT Greengrass?
    softmax与sigmoid的关系&最大熵与极大似然估计的关系
    AWS IoT Greengrass:连接器入门
    损失函数:最小二乘法与极大似然估计法
    AWS IoT Greengrass:将密钥部署到核心
    奇异值分解(SVD)
    积性函数前缀和个人总结
    AWS IoT Greengrass:核心软件的 OTA 更新
  • 原文地址:https://www.cnblogs.com/huibixiaoxing/p/7641844.html
Copyright © 2011-2022 走看看