zoukankan      html  css  js  c++  java
  • Uva11584 Partitioning by Palindromes

    Partitioning by Palindromes

     We say a sequence of characters is a palindrome if it is the same written forwards and backwards. For example, ‘racecar’ is a palindrome, but ‘fastcar’ is not. A partition of a sequence of characters is a list of one or more disjoint non-empty groups of consecutive characters whose concatenation yields the initial sequence. For example, (‘race’, ‘car’) is a partition of ‘racecar’ into two groups. Given a sequence of characters, we can always create a partition of these characters such that each group in the partition is a palindrome! Given this observation it is natural to ask: what is the minimum number of groups needed for a given string such that every group is a palindrome? For example: • ‘racecar’ is already a palindrome, therefore it can be partitioned into one group. • ‘fastcar’ does not contain any non-trivial palindromes, so it must be partitioned as (‘f’, ‘a’, ‘s’, ‘t’, ‘c’, ‘a’, ‘r’). • ‘aaadbccb’ can be partitioned as (‘aaa’, ‘d’, ‘bccb’). Input Input begins with the number n of test cases. Each test case consists of a single line of between 1 and 1000 lowercase letters, with no whitespace within. Output For each test case, output a line containing the minimum number of groups required to partition the input into groups of palindromes. Sample Input 3 racecar fastcar aaadbccb Sample Output 1 7 3

    https://odzkskevi.qnssl.com/5cc02c8be522c16812da27d55b5790ce?v=1508140214

    【题解】

    预处理ok[i][j]表示i到j是否组成回文串,枚举中间点即可

    注意偶数回文串的情况

    dp[i]表示前i个数的最小划分,转移即可

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <algorithm>
     4 #include <cstdlib>
     5 #include <cstring>
     6 #include <cmath>
     7 #define max(a, b) ((a) > (b) ? (a) : (b))
     8 #define min(a, b) ((a) < (b) ? (a) : (b))
     9 inline void swap(int &a, int &b)
    10 {
    11     int tmp = a;a = b;b = tmp;
    12 }
    13 inline void read(int &x)
    14 {
    15     x = 0;char ch = getchar(), c = ch;
    16     while(ch < '0' || ch > '9')c = ch, ch = getchar();
    17     while(ch <= '9' && ch >= '0')x = x * 10 + ch - '0', ch = getchar();
    18     if(c == '-')x = -x;
    19 }
    20 
    21 const int INF = 0x3f3f3f3f;
    22 const int MAXN = 1000 + 10;
    23 
    24 int t,n,dp[MAXN], ok[MAXN][MAXN];
    25 char s[MAXN];
    26 
    27 int main()
    28 {
    29     read(t);
    30     for(;t;--t)
    31     {
    32         memset(ok, 0, sizeof(ok));
    33         scanf("%s", s + 1);
    34         n = strlen(s + 1);
    35         for(register int i = 1;i <= n;++ i)
    36         {
    37             int j = i;
    38             int tmp = i;
    39             while(s[tmp] == s[j] && tmp >= 1 && j <= n)
    40             {
    41                 ok[tmp][j] = 1;
    42                 -- tmp, ++ j;
    43             }
    44             tmp = i;
    45             j = tmp + 1;
    46             while(s[tmp] == s[j] && tmp >= 1 && j <= n)
    47             {
    48                 ok[tmp][j] = 1;
    49                 -- tmp, ++ j;
    50             }
    51         } 
    52         for(register int i = 1;i <= n;++ i)
    53         {
    54             dp[i] = INF;
    55             for(register int j = 1;j <= i;++ j)
    56                 if(ok[j][i]) dp[i] = min(dp[i], dp[j - 1] + 1);
    57         }
    58         printf("%d
    ", dp[n]);
    59     }
    60     return 0;
    61 }
    Uva11584
  • 相关阅读:
    [导入]CodeSmith基础(六)
    [导入]CodeSmith基础(五)
    POJ 2229 Sumsets(经典2次幂和问题)
    UVa 10820 Send a Table(欧拉函数)
    UVa 571 Jugs(经典倒水问题)
    UVa 10717 Mint(LCM)
    UVa 10791 Minimum Sum LCM(素因子分解)
    汇编的艺术(01)sizeof operator
    UVa 11121 Base 2(负数进制)
    UVa 106 Fermat vs. Pythagoras(毕达哥拉斯定理)
  • 原文地址:https://www.cnblogs.com/huibixiaoxing/p/7691127.html
Copyright © 2011-2022 走看看