zoukankan      html  css  js  c++  java
  • One Person Game ZOJ Problem Set 3329

    One Person Game

    Time Limit: 1 Second      Memory Limit: 32768 KB      Special Judge

    There is a very simple and interesting one-person game. You have 3 dice, namely Die1, Die2 and Die3. Die1 has K1 faces. Die2 has K2 faces. Die3 has K3 faces. All the dice are fair dice, so the probability of rolling each value, 1 to K1, K2, K3 is exactly 1 / K1, 1 / K2 and 1 / K3. You have a counter, and the game is played as follow:

    1. Set the counter to 0 at first.
    2. Roll the 3 dice simultaneously. If the up-facing number of Die1 is a, the up-facing number of Die2 is b and the up-facing number of Die3 is c, set the counter to 0. Otherwise, add the counter by the total value of the 3 up-facing numbers.
    3. If the counter's number is still not greater than n, go to step 2. Otherwise the game is ended.

    Calculate the expectation of the number of times that you cast dice before the end of the game.

    Input

    There are multiple test cases. The first line of input is an integer T (0 < T <= 300) indicating the number of test cases. Then T test cases follow. Each test case is a line contains 7 non-negative integers n, K1, K2, K3, a, b, c (0 <= n <= 500, 1 < K1, K2, K3 <= 6, 1 <= a <= K1, 1 <= b <= K2, 1 <= c <= K3).

    Output

    For each test case, output the answer in a single line. A relative error of 1e-8 will be accepted.

    Sample Input

    2
    0 2 2 2 1 1 1
    0 6 6 6 1 1 1
    

    Sample Output

    1.142857142857143
    1.004651162790698
    

    Author: CAO, Peng
    Source: The 7th Zhejiang Provincial Collegiate Programming Contest

    dp求期望的题。
        题意:
        有三个均匀的骰子,分别有k1,k2,k3个面,初始分数是0,
        当掷三个骰子的点数分别为a,b,c的时候,分数清零,否则分数加上三个骰子的点数和,
        当分数>n的时候结束。求需要掷骰子的次数的期望。
        题解:
        设 E[i]表示现在分数为i,到结束游戏所要掷骰子的次数的期望值。
        显然 E[>n] = 0; E[0]即为所求答案;
        E[i] = ∑Pk*E[i+k] + P0*E[0] + 1; (Pk表示点数和为k的概率,P0表示分数清零的概率)
        由上式发现每个 E[i]都包含 E[0],而 E[0]又是我们要求的,是个定值。
        设 E[i] = a[i]*E[0] + b[i];
        将其带入上面的式子:
        E[i] = ( ∑Pk*a[i+k] + P0 )*E[0] + ∑Pk*b[i+k] + 1;
        显然,
        a[i] = ∑Pk*a[i+k] + P0;
        b[i] = ∑Pk*b[i+k] + 1;
        当 i > n 时:
        E[i] = a[i]*E[0] + b[i] = 0;
        所以 a[i>n] = b[i>n] = 0;
        可依次算出 a[n],b[n]; a[n-1],b[n-1] ... a[0],b[0];
        则 E[0] = b[0]/(1 - a[0]);

    #include <cstdio>
    #include <cstring>
    #include <iostream>
    
    using namespace std;
    
    int main()
    {
        int    nc, n, ks, k1, k2, k3, a, b, c;
        double p0, p[20];
    
        cin >> nc;
        while ( nc-- )
        {
            cin >> n >> k1 >> k2 >> k3 >> a >> b >> c;
            ks = k1 + k2 + k3;
            p0 = 1.0 / (k1*k2*k3);
            memset(p, 0, sizeof(p));
    
            for (int i = 1; i <= k1; i++)
                for (int j = 1; j <= k2; j++)
                    for (int k = 1; k <= k3; k++)
                    {
                        if ( i != a || j != b || k != c )
                            p[i+j+k] += p0;
                    }
    
            double a[520] = {0}, b[520] = {0};
            for (int i = n; i >= 0; i--)
            {
                for (int k = 3; k <= ks; k++)
                {
                    a[i] += a[i+k]*p[k];
                    b[i] += b[i+k]*p[k];
                }
                a[i] += p0;
                b[i] += 1;
            }
            printf("%.15lf\n", b[0]/(1 - a[0]) );
        }
        return 0;
    }
    

      

  • 相关阅读:
    10 行 Python 代码,批量压缩图片 500 张,简直太强大了
    听说苏州是互联网的荒漠,真的吗?
    sum() 函数性能堪忧,列表降维有何良方?
    len(x) 击败 x.len(),从内置函数看 Python 的设计思想
    如何给列表降维?sum()函数的妙用
    Shell脚本关于循环的一些总结
    大技霸教你远程执行Linux脚本和命令
    老板对我说,你要是能找出公司里摸鱼的人,我就给你涨薪!于是我写了两个脚本……
    Linux 命令行下搜索工具大盘点,效率提高不止一倍!
    饿了么总监分享:我是如何完成从程序员到管理层的蜕变?
  • 原文地址:https://www.cnblogs.com/huicpc0212/p/3038133.html
Copyright © 2011-2022 走看看