zoukankan      html  css  js  c++  java
  • 经典排序算法

    经典排序算法




    创建3个文件:sortArray.h、sortArray.c、sortArrayTest.c。




    sortArray.h
    #ifndef SORT_ARRAY_H_
    #define SORT_ARRAY_H_
    
    // 功能: 比较两个数据.
    // 参数: a(数据a), b(数据b).
    // 返回: a>b返回正数, a<b返回负数, 否则返回0.
    // 注意: 其实返回值可以是任意int类型值, 但是为了统一规范使用所以才强制返回值.
    typedef int ( CompareFunc )( const void *a, const void *b );
    
    // 功能: 选择排序.
    // 参数: a(需排序的数组), left(需排序区间的左闭边界), right(需排序区间的右闭边界), cmp(自定义比较函数).
    // 返回: 无.
    // 注意: 当 a 为NULL 或 cmp 为NULL 或 区间范围表示错误 时, 将错误退出程序.
    extern void selectSortArray( int32_t a[], int32_t left, int32_t right, CompareFunc *cmp );
    
    // 功能: 冒泡排序.
    // 参数: a(需排序的数组), left(需排序区间的左闭边界), right(需排序区间的右闭边界), cmp(自定义比较函数).
    // 返回: 无.
    // 注意: 当 a 为NULL 或 cmp 为NULL 或 区间范围表示错误 时, 将错误退出程序.
    extern void bubbleSortArray( int32_t a[], int32_t left, int32_t right, CompareFunc *cmp );
    
    // 功能: 插入排序.
    // 参数: a(需排序的数组), left(需排序区间的左闭边界), right(需排序区间的右闭边界), cmp(自定义比较函数).
    // 返回: 无.
    // 注意: 当 a 为NULL 或 cmp 为NULL 或 区间范围表示错误 时, 将错误退出程序.
    extern void insertSortArray( int32_t a[], int32_t left, int32_t right, CompareFunc *cmp );
    
    // 功能: 归并排序.
    // 参数: a(需排序的数组), left(需排序区间的左闭边界), right(需排序区间的右闭边界), cmp(自定义比较函数).
    // 返回: 无.
    // 注意: 当 a 为NULL 或 cmp 为NULL 或 区间范围表示错误 时, 将错误退出程序.
    extern void mergeSortArray( int32_t a[], int32_t left, int32_t right, CompareFunc *cmp );
    
    // 功能: 快速排序.
    // 参数: a(需排序的数组), left(需排序区间的左闭边界), right(需排序区间的右闭边界), cmp(自定义比较函数).
    // 返回: 无.
    // 注意: 当 a 为NULL 或 cmp 为NULL 或 区间范围表示错误 时, 将错误退出程序.
    extern void quickSortArray( int32_t a[], int32_t left, int32_t right, CompareFunc *cmp );
    
    // 功能: 堆排序.
    // 参数: a(需排序的数组), left(需排序区间的左闭边界), right(需排序区间的右闭边界), cmp(自定义比较函数).
    // 返回: 无.
    // 注意: 当 a 为NULL 或 cmp 为NULL 或 区间范围表示错误 时, 将错误退出程序.
    extern void heapSortArray( int32_t a[], int32_t left, int32_t right, CompareFunc *cmp );
    
    // 功能: 计数排序.
    // 参数: a(需排序的数组), left(需排序区间的左闭边界), right(需排序区间的右闭边界), cmp(自定义比较函数).
    // 返回: 无.
    // 注意: 当 a 为NULL 或 cmp 为NULL 或 区间范围表示错误 时, 将错误退出程序.
    extern void countSortArray( int32_t a[], int32_t left, int32_t right, CompareFunc *cmp );
    
    // 功能: 基数排序.
    // 参数: a(需排序的数组), left(需排序区间的左闭边界), right(需排序区间的右闭边界), cmp(自定义比较函数).
    // 返回: 无.
    // 注意: 当 a 为NULL 或 cmp 为NULL 或 区间范围表示错误 时, 将错误退出程序.
    extern void radixSortArray( int32_t a[], int32_t left, int32_t right, CompareFunc *cmp );
    
    #endif
    

    sortArray.c
    #include <stdint.h>
    #include <time.h>
    #include "sortArray.h"
    
    
    // 功能: 打印错误信息后就错误退出程序.
    // 参数: expression(错误判断表达式), message(需打印的错误信息).
    // 返回: 无.
    // 注意: 当表达式 expression 为真时, 才触发.
    #define ERROR_EXIT( expression, message )                                    
    if( (expression) ) {                                                         
    	fprintf( stderr, "
    error location: file = %s, func = %s, line = %d.
    ", 
    	                       __FILE__, __func__, __LINE__ );                   
    	fprintf( stderr, "error  message: %s%s.
    a",                            
    	                       (message) != NULL ? (message) : __func__,         
    		                   (message) != NULL ? "" : " function error" );     
    	exit( EXIT_FAILURE );                                                    
    }
    
    // 功能: 数组的两个元素进行互换.
    // 参数: a(数组首地址), i(数组下标), j(数组下标).
    // 返回: 无.
    // 注意: 没有副作用的宏, C99标准: #define f ({...}).
    #define SWAP( a, i, j ) ({            
    	int32_t i1i1i = (i), j1j1j = (j); 
    	int32_t t1t1t = *((a) + i1i1i);   
    	*((a) + i1i1i) = *((a) + j1j1j);  
    	*((a) + j1j1j) = t1t1t;           
    })
    
    #define MAX( a, b ) ((a) > (b) ? (a) : (b))
    #define MIN( a, b ) ((a) < (b) ? (a) : (b))
    
    • selectSortArray
      void selectSortArray( int32_t a[], int32_t left, int32_t right, CompareFunc *cmp ) {
      	int32_t i = 0, m = 0;
      
      	ERROR_EXIT( !a || left < 0 || !cmp, NULL );
      	while( left <= right ) {
      		m = left;
      		for( i = left + 1; i <= right; ++i ) {
      			m = cmp( &a[i], &a[m] ) < 0 ? i : m;
      		}
      		if( m != left ) {
      			SWAP( a, left, m );
      		}
      		++left;
      	}
      }
      

    • bubbleSortArray
      void bubbleSortArray( int32_t a[], int32_t left, int32_t right, CompareFunc *cmp ) {
      	int32_t i = 0;
      
      	ERROR_EXIT( !a || left < 0 || !cmp, NULL );
      	while( left < right ) {
      		for( i = right; i > left; --i ) {
      			if( cmp( &a[i], &a[i - 1] ) < 0 ) {
      				SWAP( a, i, i - 1 );
      			}
      		}
      		++left;
      	}
      }
      

    • insertSortArray
      • 版本一
        void insertSortArray( int32_t a[], int32_t left, int32_t right, CompareFunc *cmp ) {
        	int32_t i = 0, j = 0;
        
        	ERROR_EXIT( !a || left < 0 || !cmp, NULL );
        	for( i = left; i < right; ++i ) {
        		#if 1
        		for( j = i + 1; j > left && cmp( &a[j], &a[j - 1] ) < 0; --j ) {
        			SWAP( a, j, j - 1 );
        		}
        		#else
        		for( j = i; j >= left && cmp( &a[j + 1], &a[j] ) < 0; --j ) {
        			SWAP( a, j, j + 1 );
        		}
        		#endif
        	}
        }
        
      • 版本二
        void insertSortArray( int32_t a[], int32_t left, int32_t right, CompareFunc *cmp ) {
        	int32_t i = 0, j = 0, temp = 0;
        
        	ERROR_EXIT( !a || left < 0 || !cmp, NULL );
        	for( i = left; i <= right; ++i ) {
        		temp = a[i];
        		for( j = i - 1; j >= left && cmp( &temp, &a[j] ) < 0; --j ) {
        			a[j + 1] = a[j];
        		}
        		a[j + 1] = temp;
        	}
        }
        

    • mergeSortArray
      • 版本一
        static void merge( int32_t a[], int32_t left, int32_t middle, int32_t right, CompareFunc *cmp ) {
        	int32_t *tempA = NULL, i = 0, l = left, r = middle + 1;
        
        	if( left < 0 || left > middle || middle > right ) {
        		return;
        	}
        	tempA = malloc( sizeof(*tempA) * (right - left + 1) );
        	while( l <= middle && r <= right ) {
        		tempA[i++] = cmp( &a[l], &a[r] ) <= 0 ? a[l++] : a[r++];
        	}
        	while( l <= middle ) {
        		tempA[i++] = a[l++];
        	}
        	while( r <= right ) {
        		tempA[i++] = a[r++];
        	}
        	while( --i >= 0 ) {
        		a[left + i] = tempA[i];
        	}
        	free( tempA );
        }
        
        void mergeSortArray( int32_t a[], int32_t left, int32_t right, CompareFunc *cmp ) {
        	int32_t middle = left + (right - left) / 2;
        
        	ERROR_EXIT( !a || left < 0 || !cmp, NULL );
        	if( left >= right ) {
        		return;
        	}
        	mergeSortArray( a, left, middle, cmp );
        	mergeSortArray( a, middle + 1, right, cmp );
        	merge( a, left, middle, right, cmp );
        }
        
      • 版本二
        static void merge( int32_t a[], int32_t left, int32_t middle, int32_t right, CompareFunc *cmp ) {
        	int32_t *tempA = NULL, i = 0, l = left, r = middle + 1;
        
        	if( left < 0 || left > middle || middle > right ) {
        		return;
        	}
        	tempA = malloc( sizeof(*tempA) * (right - left + 1) );
        	while( l <= middle || r <= right ) {
        		if( l <= middle && r <= right ) {
        			tempA[i++] = cmp( &a[l], &a[r] ) <= 0 ? a[l++] : a[r++];
        		} else if( l <= middle ) {
        			tempA[i++] = a[l++];
        		} else {
        			tempA[i++] = a[r++];
        		}
        	}
        	while( --i >= 0 ) {
        		a[left + i] = tempA[i];
        	}
        	free( tempA );
        }
        
        void mergeSortArray( int32_t a[], int32_t left, int32_t right, CompareFunc *cmp ) {
        	int32_t middle = left + (right - left) / 2;
        
        	ERROR_EXIT( !a || left < 0 || !cmp, NULL );
        	if( left >= right ) {
        		return;
        	}
        	mergeSortArray( a, left, middle, cmp );
        	mergeSortArray( a, middle + 1, right, cmp );
        	merge( a, left, middle, right, cmp );
        }
        
      • 版本三
        static void merge( int32_t a[], int32_t left, int32_t right, CompareFunc *cmp, int32_t tempA[] ) {
        	int32_t middle = left + (right - left) / 2;
        	int32_t i = 0, l = left, r = middle + 1;
        
        	if( left >= right ) {
        		return;
        	}
        	merge( a, left, middle, cmp, tempA );
        	merge( a, middle + 1, right, cmp, tempA );
        	while( l <= middle || r <= right ) {
        		if( l <= middle && r <= right ) {
        			tempA[i++] = cmp( &a[l], &a[r] ) <= 0 ? a[l++] : a[r++];
        		} else if( l <= middle ) {
        			tempA[i++] = a[l++];
        		} else {
        			tempA[i++] = a[r++];
        		}
        	}
        	while( --i >= 0 ) {
        		a[left + i] = tempA[i];
        	}
        }
        
        void mergeSortArray( int32_t a[], int32_t left, int32_t right, CompareFunc *cmp ) {
        	int32_t *tempA = NULL;
        
        	ERROR_EXIT( !a || left < 0 || !cmp, NULL );
        	if( left >= right ) {
        		return;
        	}
        	tempA = malloc( sizeof(*tempA) * (right - left + 1) );
        	merge( a, left, right, cmp, tempA );
        	free( tempA );
        }
        
      • 版本四
        static void merge( int32_t a[], int32_t left, int32_t right, CompareFunc *cmp, int32_t tempA[] ) {
        	int32_t middle = left + (right - left) / 2;
        	int32_t i = 0, j = 0;
        
        	if( left >= right ) {
        		return;
        	}
        	merge( a, left, middle, cmp, tempA );
        	merge( a, middle + 1, right, cmp, tempA );
        	for( j = 0, i = left; i <= middle; ++i ) {
        		tempA[j++] = a[i];
        	}
        	// R.Sedgewick的优化方法, 归并过程中先将后一半逆序再进行归并. 如: [1,4 | 3,7] 变为 [1,4 | 7,3].
        	for( i = right; i > middle; --i ) {
        		tempA[j++] = a[i];
        	}
        	for( i = 0, j = right - left; i <= j; ++left ) {
        		a[left] = cmp( &tempA[i], &tempA[j] ) <= 0 ? tempA[i++] : tempA[j--];
        	}
        }
        
        void mergeSortArray( int32_t a[], int32_t left, int32_t right, CompareFunc *cmp ) {
        	int32_t *tempA = NULL;
        
        	ERROR_EXIT( !a || left < 0 || !cmp, NULL );
        	if( left >= right ) {
        		return;
        	}
        	tempA = malloc( sizeof(*tempA) * (right - left + 1) );
        	merge( a, left, right, cmp, tempA );
        	free( tempA );
        }
        

    • quickSortArray
      • 版本一
        static void partition( int32_t a[], int32_t left, int32_t right, CompareFunc *cmp, int32_t boundary[2] ) {
        	int32_t l = left - 1, c = left, r = right, cmpR = 0;
        
        	while( c < r ) {
        		cmpR = cmp( &a[c], &a[right] );
        		if( cmpR < 0 ) {
        			++l;
        			SWAP( a, l, c );
        			++c;
        		} else if( cmpR == 0 ) {
        			++c;
        		} else {
        			--r;
        			SWAP( a, c, r );
        		}
        	}
        	SWAP( a, r, right );
        	boundary[0] = l + 1;
        	boundary[1] = r;
        }
        
        void quickSortArray( int32_t a[], int32_t left, int32_t right, CompareFunc *cmp ) {
        	int32_t boundary[2] = {-1, -1}, i = 0;
        
        	srand( time( NULL ) );
        	ERROR_EXIT( !a || left < 0 || !cmp, NULL );
        	if( left >= right ) {
        		return;
        	}
        	// left + rand() % (right - left) 取值区间为: [left, right).
        	// left + rand() % (right - left + 1) 取值区间为: [left, right].
        	i = left + rand() % (right - left);
        	SWAP( a, right, i );
        	partition( a, left, right, cmp, boundary );
        	// boundary[0] 表示等于区间的左闭边界, boundary[1] 表示等于区间的右闭边界.
        	quickSortArray( a, left, boundary[0] - 1, cmp );
        	quickSortArray( a, boundary[1] + 1, right, cmp );
        }
        
      • 版本二
        void quickSortArray( int32_t a[], int32_t left, int32_t right, CompareFunc *cmp ) {
        	int32_t i = 0, cmpR = 0, l = left - 1, c = left, r = right;
        
        	srand( time( NULL ) );
        	ERROR_EXIT( !a || left < 0 || !cmp, NULL );
        	if( left >= right ) {
        		return;
        	}
        	// left + rand() % (right - left) 取值区间为: [left, right).
        	// left + rand() % (right - left + 1) 取值区间为: [left, right].
        	i = left + rand() % (right - left);
        	SWAP( a, right, i );
        	while( c < r ) {
        		cmpR = cmp( &a[c], &a[right] );
        		if( cmpR < 0 ) {
        			++l;
        			SWAP( a, c, l );
        			++c;
        		} else if( cmpR == 0 ) {
        			++c;
        		} else {
        			--r;
        			SWAP( a, c, r );
        		}
        	}
        	SWAP( a, right, r );
        	quickSortArray( a, left, l, cmp );
        	quickSortArray( a, r + 1, right, cmp );
        }
        

    • heapSortArray
      • 版本一
        static void heapinsert( int32_t heap[], int32_t i, CompareFunc *cmp ) {
        	int32_t p = 0;
        
        	for( p = (i - 1) / 2; cmp( &heap[i], &heap[p] ) > 0; p = (i - 1) / 2 ) {
        		SWAP( heap, p, i );
        		i = p;
        	}
        }
        
        static void heapify( int32_t heap[], int32_t heapSize, int32_t i, CompareFunc *cmp ) {
        	int32_t l = 0, m = 0;
        
        	for( l = i * 2 + 1; l < heapSize; l = i * 2 + 1 ) {
        		m = l + 1 < heapSize && cmp( &heap[l + 1], &heap[l] ) > 0 ? l + 1 : l;
        		if( cmp( &heap[i], &heap[m] ) > 0 ) {
        			break;
        		}
        		SWAP( heap, m, i );
        		i = m;
        	}
        }
        
        void heapSortArray( int32_t a[], int32_t left, int32_t right, CompareFunc *cmp ) {
        	int32_t i = 0, n = right - left + 1;
        
        	ERROR_EXIT( !a || left < 0 || !cmp, NULL );
        	if( left >= right ) {
        		return;
        	}
        	for( i = 0; i < n; ++i ) {
        		heapinsert( &a[left], i, cmp );
        	}
        	while( --i > 0 ) {
        		SWAP( &a[left], 0, i );
        		heapify( &a[left], i, 0, cmp );
        	}
        }
        
      • 版本二
        void heapSortArray( int32_t a[], int32_t left, int32_t right, CompareFunc *cmp ) {
        	int32_t i = 0, n = right - left + 1;
        	int32_t p = 0, index = 0, l = 0, m = 0;
        
        	ERROR_EXIT( !a || left < 0 || !cmp, NULL );
        	if( left >= right ) {
        		return;
        	}
        	a += left; // 使a指向 a[left] 元素的首地址.
        	for( i = 0; i < n; ++i ) {
        		index = i;
        		p = (index - 1) / 2;
        		for( p = (index - 1) / 2; cmp( &a[index], &a[p] ) > 0; p = (index - 1) / 2 ) {
        			SWAP( a, p, index );
        			index = p;
        		}
        	}
        	while( --i > 0 ) {
        		SWAP( a, 0, i );
        		index = 0;
        		for( l = index * 2 + 1; l < i; l = index * 2 + 1 ) {
        			m = l + 1 < i && cmp( &a[l + 1], &a[l] ) > 0 ? l + 1 : l;
        			if( cmp( &a[index], &a[m] ) > 0 ) {
        				break;
        			}
        			SWAP( a, index, m );
        			index = m;
        		}
        	}
        }
        

    • countSortArray
      void countSortArray( int32_t a[], int32_t left, int32_t right, CompareFunc *cmp ) {
      	int32_t *count = NULL, i = 0, j = 0, min = INT32_MAX, max = INT32_MIN;
      
      	ERROR_EXIT( !a || left < 0 || !cmp, NULL );
      	for( i = left; i <= right; ++i ) {
      		min = MIN( min, a[i] );
      		max = MAX( max, a[i] );
      	}
      	if( min == max ) {
      		return;
      	}
      	count = calloc( sizeof(*count), (max - min + 1) );
      	for( i = left; i <= right; ++i ) {
      		++count[a[i] - min]; 
      	}
      	if( cmp( &min, &max ) <= 0 ) {
      		for( i = min; i <= max; ++i ) {
      			for( j = count[i - min]; j > 0; --j ) {
      				a[left++] = i;
      			}
      		}
      	} else {
      		for( i = max; i >= min; --i ) {
      			for( j = count[i - min]; j > 0; --j ) {
      				a[left++] = i;
      			}
      		}
      	}
      	free( count );
      }
      

    • radixSortArray

    sortArrayTest.c
    实现对数器.
    
    #include <stdio.h>
    #include <stdlib.h>
    #include <stdint.h>
    #include <time.h>
    #include "sortArray.h"
    
    
    #define MAX( a, b ) ((a) > (b) ? (a) : (b))
    
    
    // 功能: 对数组的某一区间内的元素值进行随机化.
    // 参数: a(数组首地址), left(左闭区间), right(右闭区间), v(最大随机值).
    // 返回: 无.
    // 注意: 当v是正数/负数/零时,随机值的区间分别为[-v, v]/[]/[].
    static void randomArray( int32_t a[], int32_t left, int32_t right, int32_t v ) {
    	v -= v != INT32_MAX ? 0 : 1;
    	while( left <= right ) {
    		a[left++] = rand() % (v + 1) - rand() % (v + 1);
    	}
    }
    
    // 功能: 将源数组的某一区间内的元素值拷贝至目的数组中.
    // 参数: a(源数组首地址), left(左闭区间), right(右闭区间), b(目的数组首地址).
    // 返回: 无.
    // 注意: 无.
    static void cloneArray( const int32_t a[], int32_t left, int32_t right, int32_t b[] ) {
    	while( left <= right ) {
    		b[left] = a[left];
    		++left;
    	}
    }
    
    // 功能: 将数组的某一区间内的元素值送入到文件流中.
    // 参数: a(数组首地址), left(左闭区间), right(右闭区间), fp(文件流指针).
    // 返回: 无.
    // 注意: 无.
    static void printArray( const int32_t a[], int32_t left, int32_t right, FILE *fp ) {
    	fprintf( fp, "[" );
    	while( left <= right ) {
    		fprintf( fp, "%5d%s", a[left], left != right ? ", " : "" );
    		++left;
    	}
    	fprintf( fp, "]
    " );
    }
    
    // 功能: 数据比较.
    // 参数: a(数据1), b(数据2).
    // 返回: a<b返回负数, a>b返回正数, 否则返回0.
    // 注意: 无.
    static int cmp( const void *a, const void *b ) {
    	#if 1
    	return *(int32_t *) a - *(int32_t *) b;
    	#else
    	return *(int32_t *) b - *(int32_t *) a;
    	#endif
    }
    
    // 功能: 绝对正确的方法.
    // 参数: a(数组首地址), left(左闭区间), right(右闭区间).
    // 返回: 无.
    // 注意: 使用稳定的库函数方法 或 非常笨的方法(如暴力循环,暴力递归搜索).
    static void correct( int32_t a[], int32_t left, int32_t right ) {
    	qsort( &a[left], right - left + 1, sizeof(*a), cmp );
    }
    
    // 功能: 待测试的方法.
    // 参数: a(数组首地址), left(左闭区间), right(右闭区间).
    // 返回: 无.
    // 注意: 使用技巧性的高效的正确性未知的方法.
    static void test( int32_t a[], int32_t left, int32_t right ) {
    	selectSortArray( a, left, right, cmp );
    	//bubbleSortArray( a, left, right, cmp );
    	//insertSortArray( a, left, right, cmp );
    	//mergeSortArray( a, left, right, cmp );
    	//quickSortArray( a, left, right, cmp );
    	//heapSortArray( a, left, right, cmp );
    	//countSortArray( a, left, right, cmp );
    }
    
    // 功能: 比较两数组的同区间内的元素是否全部相等.
    // 参数: a(数组首地址), b(数组首地址), left(左闭区间), right(右闭区间).
    // 返回: 区间内的元素全部相等返回1, 否则返回0.
    // 注意: 无.
    static int equal( const int32_t a[], const int32_t b[], int32_t left, int32_t right ) {
    	while( left <= right ) {
    		if( a[left] != b[left] ) {
    			return 0;
    		}
    		++left;
    	}
    
    	return 1;
    }
    
    int main( int argc, char *argv[] ) {
    	const int32_t times = 7654321; // 测试的总测试.
    	const int32_t maxSize = 21;    // 随机的最大长度.
    	int32_t size = 0, left = 0, right = 0;
    	int32_t *a = NULL, *t = NULL, *c = NULL;
    	int32_t i = 0;
    
    	srand( time( NULL ) );
    	a = malloc( sizeof(*a) * maxSize );
    	c = malloc( sizeof(*c) * maxSize );
    	t = malloc( sizeof(*t) * maxSize );
    
    	for( i = 0; i < times; ++i ) {
    		size = rand() % (maxSize + 1); // 随机化数组长度.
    
    		randomArray( a, 0, size - 1, 321 );
    		cloneArray( a, 0, size - 1, c );
    		cloneArray( a, 0, size - 1, t );
    
    		left = 0;
    		right = size - 1;
    
    		#if 1 // 随机化排序区间.
    		left = rand() % MAX( size, 1 );
    		do {
    			right = rand() % MAX( size, 1 );
    		} while( right < left );
    		#endif
    
    		correct( c, left, right ); // 绝对正确的方法.
    		test( t, left, right );    // 待测试的方法.
    		if( !equal( c, t, 0, size - 1 ) ) {
    			fprintf( stderr, "source  :" );
    			printArray( a, 0, size - 1, stderr );
    			fprintf( stderr, "correct :" );
    			printArray( c, 0, size - 1, stderr );
    			fprintf( stderr, "test    :" );
    			printArray( t, 0, size - 1, stderr );
    			fprintf( stderr, " 本次测试不通过!
    a" );
    			exit( EXIT_FAILURE );
    		}
    	}
    
    	free( t );
    	free( c );
    	free( a );
    
    	printf( "总共 %d 次测试且全部通过!
    ", times );
    
    	return EXIT_SUCCESS;
    }
    

    sortArrayTest.sh
    # !/bin/bash
    
    for(( i = 1; i <= 21; ++i )) do
    	printf "%02d" ${i}
    	echo -n ____________
    	./sortArrayTest
    done
    



  • 相关阅读:
    Spring整合JMS-基于activeMQ实现(二)
    iOS 2D绘图详解(Quartz 2D)之概述
    iOS开发UI-利用Quartz2D 实现基本绘图(画三角形、矩形、圆、圆弧)
    Quart 2D 绘制图形简单总结
    IOS用CGContextRef画各种图形(文字、圆、直线、弧线、矩形、扇形、椭圆、三角形、圆角矩形、贝塞尔曲线、图片)
    用 Swift 制作一个漂亮的汉堡按钮过渡动画
    CAShapeLayer和CAGradientLayer
    Swift计算属性
    Swift常用语法示例代码(二)
    Swift 中的指针使用
  • 原文地址:https://www.cnblogs.com/hujunxiang98/p/12878521.html
Copyright © 2011-2022 走看看