zoukankan      html  css  js  c++  java
  • [leetcode]Combination SumII

    Combination Sum II

    Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums toT.

    Each number in C may only be used once in the combination.

    Note:

    • All numbers (including target) will be positive integers.
    • Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
    • The solution set must not contain duplicate combinations.

    For example, given candidate set 10,1,2,7,6,1,5 and target 8
    A solution set is: 
    [1, 7] 
    [1, 2, 5] 
    [2, 6] 
    [1, 1, 6] 

    算法思路:

    [leetcode]Combination Sum类似,区别是这里的元素要求不能重复,且结果需要去重。

    代码如下:

     1 public class Solution {
     2      List<List<Integer>> result = new ArrayList<List<Integer>>();
     3     public List<List<Integer>> combinationSum2(int[] num, int target) {
     4         if(num == null || num.length == 0) return result;
     5         Arrays.sort(num);
     6         List<Integer> list = new ArrayList<Integer>();
     7         dfs(num,list,0,target);
     8         return result;
     9     }
    10     
    11     private void dfs(int[] num,List<Integer> list,int k,int target){
    12         if(target == 0){
    13             List<Integer> copy = new ArrayList<Integer>(list);
    14             for(List<Integer> node : result){
    15                 int count = 0;
    16                 if(copy.size() == node.size()){
    17                     for(int i = 0; i < node.size(); i++){
    18                         if(copy.get(i) == node.get(i)){
    19                             count++;
    20                         }else break;
    21                     }
    22                     if(count == node.size()) return;
    23                 }
    24             }
    25             result.add(copy);
    26             return;
    27         }
    28         if(k >= num.length || num[k] > target) return;
    29         for(int i = k; i < num.length; i++){
    30             list.add(num[i]);
    31             dfs(num,list,i + 1, target - num[i]);
    32             list.remove(list.size() - 1);
    33         }
    34     }
    35 }

    去重这里我用了最土的算法,对每一组新插入的数组,检查result中是否存在相同的组合,这无疑会做很多无用功,而且每次遍历的时间也很浪费,后来偷懒用了之前的去重方法,在每一次进行dfs之前先检查是否与前驱相同。

     1     private void dfs(int[] num,List<Integer> list,int k,int target){
     2         if(target == 0){
     3             List<Integer> copy = new ArrayList<Integer>(list);
     4             result.add(copy);
     5             return;
     6         }
     7         if(k >= num.length || num[k] > target) return;
     8         for(int i = k; i < num.length; i++){
     9             if(i > k && num[i] == num[i - 1]) continue;//这里本来写的是i>0,结果毫无疑问的跪了。
    10             list.add(num[i]);
    11             dfs(num,list,i + 1, target - num[i]);
    12             list.remove(list.size() - 1);
    13         }
    14     }

    后来看了jd童鞋的算法,对代码进行了不一样的优化:

    完整代码如下:

     1 public class Solution {
     2      List<List<Integer>> result = new ArrayList<List<Integer>>();
     3     public List<List<Integer>> combinationSum2(int[] num, int target) {
     4         if(num == null || num.length == 0) return result;
     5         Arrays.sort(num);
     6         List<Integer> list = new ArrayList<Integer>();
     7         dfs(num,list,0,target);
     8         return result;
     9     }
    10     
    11     private void dfs(int[] num,List<Integer> list,int k,int target){
    12         if(target == 0){
    13             List<Integer> copy = new ArrayList<Integer>(list);
    14             result.add(copy);
    15             return;
    16         }
    17         if(k >= num.length || num[k] > target) return;
    18         for(int i = k; i < num.length; i++){
    19             list.add(num[i]);
    20             dfs(num,list,i + 1, target - num[i]);
    21             list.remove(list.size() - 1);
    22             while (i < num.length - 1 && num[i] == num[i + 1]) i++;
    23         }
    24     }
    25 }
    while (i < num.length - 1 && num[i] == num[i + 1]) i++;
    用的很漂亮,总而言之,对DFS还是不能运用自如。
    无论是哪种方法,优化完之后,代码的执行次数毫无疑问会减少很多,更主要的是省去了不必要的每次的查重,虽然时间复杂度是一样的,但是从代码可读性和实际执行时间来看,无疑后者更优
  • 相关阅读:
    [luoguP1437] [HNOI2004]敲砖块(DP)
    [luoguP2073] 送花(set)
    [luoguP1783] 海滩防御(二分 || 最短路 || 最小生成树)
    [luoguP3068] [USACO13JAN]派对邀请函Party Invitations(stl大乱交)
    [luoguP1849] [USACO12MAR]拖拉机Tractor(spfa)
    数组
    String
    学不会的JVM
    异常
    反射
  • 原文地址:https://www.cnblogs.com/huntfor/p/3841992.html
Copyright © 2011-2022 走看看