准备数据:
import numpy as np import tensorflow as tf import matplotlib.pylot as plt # 随机生成1000个点,围绕在y=0.1x+0.3的直线周围 num_points = 1000 vectors_set = [] for i in range(num_points): x1 = np.random.normal(0.0, 0.55) y1 = x1 * 0.1 + 0.3 + np.random.normal(0.0, 0.03) vectors_set.append([x1, y1]) # 生成一些样本 x_data = [v[0] for v in vectors_set] y_data = [v[1] for v in vectors_set] plt.scatter(x_data, y_data, c='r') plt.show()
实现线性回归:
# 生成1维W矩阵,取值是[-1, 1]之间的随机数 W = tf.Variable(tf.random_uniform([1], -1.0, 1.0), name='W') # 生成1维b矩阵,初始值是0 b = tf.Variable(tf.zeros([1]), name='b') # 经过计算取得预估值y y = W * x_data + b # 以预估值y和实际值y_data之间的均方误差作为损失 loss = tf.reduce_mean(tf.square(y - y_data), name='loss') # 采用梯度下降法来优化参数 optimizer = tf.train.GradientDescentOptimizer(0.5) # 训练的过程就是最小化这个误差值 train = optimizer.minimize(loss, name='train') sess = tf.Session() #这种定义session的方法也可以,但是不推荐。 init = tf.global_variables_initializer() sess.run(init) # 初始化的w和b是多少 print("W=", sess.run(W), "b=", sess.run(b), "loss=", sess.run(loss)) # 执行20次训练 for step in range(20): sess.run(train) # 输出训练好的W和b print("W=", sess.run(W), "b=", sess.run(b), "loss=", sess.run(loss))