zoukankan      html  css  js  c++  java
  • TensorFlow遇到的问题汇总(持续更新中......)

    1、调用tf.softmax_cross_entropy_with_logits函数出错。

    #原因是这个函数,不能按以前的方式进行调用了,只能使用命名参数的方式来调用。
    #原来是这样的:
    tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y, y_))
    #修改成这样的:
    tf.reduce_sum(tf.nn.softmax_cross_entropy_with_logits(logits=y, labels=y_))

    2、Tensorflow 函数tf.cocat([fw,bw],2)出错:TypeError: Expected int32, got list containing Tensors of type ‘_Message’ instead.

    Expected int32, got list containing Tensors of type ‘_Message’ inst
    原因是11版本的函数形式为:tf.concat(2,[fw,bw]),即应把串联的维度与串联值位置调换即可.

    3、Input ‘split_dim’ of ‘Split’ Op has type float32 that does not match expected type of int32

    #原来是这样的:
    This is because in Tensorflow versions < 0.12.0 the split function takes the arguments as:
    x = tf.split(0, n_steps, x) # tf.split(axis, num_or_size_splits, value)
    
    #修改成这样的:
    The tutorial you are working from was written for versions > 0.12.0, which has been changed to be consistent with Numpy’s split syntax:
    x = tf.split(x, n_steps, 0) # tf.split(value, num_or_size_splits, axis)

    4、‘module’ object has no attribute ‘pack’
    因为TF后面的版本修改了这个函数的名称,把 tf.pack 改为 tf.stack。

    5、The value of a feed cannot be a tf.Tensor object. Acceptable feed values include Python scalars, strings, lists, or numpy ndarrays
    数据集是feed输入的,feed的数据格式是有要求的。
    解决:img,label = sess.run[img,label], 用返回值。

    6、module 'tensorflow.python.ops.nn' has no attribute 'rnn_cell'

    #原因是1.0版本改了不少地方啊...
    #原来是这样的:
    from tensorflow.python.ops import rnn, rnn_cell 
    lstm_cell = rnn_cell.BasicLSTMCell(rnn_size,state_is_tuple=True) 
    outputs, states = rnn.rnn(lstm_cell, x, dtype=tf.float32)
    
    #修改成这样的:
    from tensorflow.contrib import rnn 
    lstm_cell = rnn.BasicLSTMCell(rnn_size) 
    outputs, states = rnn.static_rnn(lstm_cell, x, dtype=tf.float32)

    7、Variable basic/rnn/basic_lstm_cell/weights does not exist, or was not created with tf.get_variable(). Did you mean to set reuse=None in VarScope?

    with tf.variable_scope(scope_name, reuse=None) as scope:
        scope.reuse_variables()
        w = tf.get_variable("weight", shape, initializer = random_normal_initializer(0., 0.01)))
        b = tf.get_variable("biase", shape[-1], initializer = tf.constant_initializer(0.0))
    #或:
    with tf.variable_scope(scope_name, reuse=True):
        w = tf.get_variable("weight")
        b = tf.get_variable("biase")
  • 相关阅读:
    小白必读:闲话HTTP短连接中的Session和Token
    网络编程懒人入门(六):深入浅出,全面理解HTTP协议
    IM系统的MQ消息中间件选型:Kafka还是RabbitMQ?
    致我们再也回不去的 Github ...
    了不起的WebRTC:生态日趋完善,或将实时音视频技术白菜化
    网络编程懒人入门(六):史上最通俗的集线器、交换机、路由器功能原理入门
    盘点微信的前世今生,微信成功的必然和偶然
    微信七年回顾:历经多少质疑和差评,才配拥有今天的强大
    写给小白的实时音视频技术入门提纲
    jenkins使用jacoco插件检测代码覆盖率(八)
  • 原文地址:https://www.cnblogs.com/hunttown/p/6866586.html
Copyright © 2011-2022 走看看