1. 背景
上一篇介绍了Kafka Streams的时间窗口以及Tumbling Window的实例。这一篇我们利用Kafka Streams中的KTable概念来实时计算一组电影的平均分数。
2. 功能演示说明
这篇文章中我们会创建一个Kafka topic来表示电影打分事件,然后我们编写一个程序实时统计当前电影的平均分数。我们依然使用ProtocolBuffer对消息事件进行序列化。事件的JSON格式如下所示:
{"movie_id": 362, "rating": 9.6} {"movie_id": 362, "rating": 9.7} {"movie_id": 362, "rating": 8.6}
当Kafka Streams程序依次处理这3条事件时,它将依次产生以下输出:
> 9.6 > 9.65 > 9.3
3. 配置项目
第1步是创建项目功能所在路径,命令如下:
$ mkdir aggregating-average $ cd aggregating-average
然后在新创建的aggregating-average路径下新建Gradle配置文件build.gradle,内容如下:
buildscript { repositories { jcenter() } dependencies { classpath "com.github.jengelman.gradle.plugins:shadow:4.0.2" } } plugins { id "java" id "com.google.protobuf" version "0.8.12" } apply plugin: 'com.github.johnrengelman.shadow' sourceCompatibility = "1.8" targetCompatibility = "1.8" version = "0.0.1" repositories { mavenCentral() jcenter() maven { url 'https://packages.confluent.io/maven/' } } group 'huxihx.kafkastreams' dependencies { implementation 'com.google.protobuf:protobuf-java:3.12.4' implementation 'org.slf4j:slf4j-simple:1.7.30' implementation 'org.apache.kafka:kafka-streams:2.5.0' implementation "com.typesafe:config:1.4.0" testCompile group: 'junit', name: 'junit', version: '4.13' } protobuf { generatedFilesBaseDir = "$projectDir/src/" protoc { artifact = 'com.google.protobuf:protoc:3.12.4' } } jar { manifest { attributes( "Class-Path": configurations.runtime.collect { it.getName() }.join(" "), "Main-Class": 'huxihx.kafkastreams.RunningAverage' ) } } shadowJar { archiveFileName = "aggregating-average-standalone-$version.$extension" }
我们指定app主类是huxihx.kafkastreams.RunningAverage。之后,保存上面的文件,然后执行下列命令下载Gradle的wrapper套件:
$ gradle wrapper
做完这些之后,我们在aggregating-average目录下创建名为configuration的子目录,用于保存我们的参数配置文件dev.properties:
$ mkdir configuration $ cd configuration $ vi dev.properties
dev.properties文件内容如下:
application.id=kafka-films request.timeout.ms=20000 bootstrap.servers=localhost:9092 retry.backoff.ms=500 default.topic.replication.factor=1 offset.reset.policy=latest input.ratings.topic.name=ratings input.ratings.topic.partitions=1 input.ratings.topic.replication.factor=1 output.rating-averages.topic.name=rating-averages output.rating-averages.topic.partitions=1 output.rating-averages.topic.replication.factor=1
这里我们创建了一个输入topic:ratings和一个输出topic:rating-averages。前者表示电影打分事件,后者保存电影的平均分数。
4. 创建消息Schema
由于我们使用ProtocolBuffer进行序列化,因此我们要提前生成好Java类来建模实体消息。我们在aggregating-average路径下执行以下命令创建保存schema的文件夹:
$ mkdir -p src/main/proto $ cd src/main/proto
之后在proto文件夹下创建名为rating.proto文件,内容如下:
syntax = "proto3"; package huxihx.kafkastreams.proto; message Rating { int64 movie_id = 1; double rating = 2; }
之后创建countsum.proto文件保存计算平均数所需的count和sum信息:
syntax = "proto3"; package huxihx.kafkastreams.proto; message CountAndSum { int64 count = 1; double sum = 2; }
保存上面的文件之后在aggregating-average目录下运行gradlew命令:
$ ./gradlew build
此时,你应该可以在aggregating-average的src/main/java/huxihx/kafkastreams/proto下看到生成的两个Java类:RatingOuterClass和Countsum。
5. 创建Serdes
这一步我们为所需的topic消息创建Serdes。首先在aggregating-average目录下执行下面的命令创建对应的文件夹目录:
$ mkdir -p src/main/java/huxihx/kafkastreams/serdes
在新创建的serdes文件夹下创建ProtobufSerializer.java,内容如下:
package huxihx.kafkastreams.serdes; import com.google.protobuf.MessageLite; import org.apache.kafka.common.serialization.Serializer; public class ProtobufSerializer<T extends MessageLite> implements Serializer<T> { @Override public byte[] serialize(String topic, T data) { return data == null ? new byte[0] : data.toByteArray(); } }
接下来是创建ProtobufDeserializer.java:
package huxihx.kafkastreams.serdes; import com.google.protobuf.InvalidProtocolBufferException; import com.google.protobuf.MessageLite; import com.google.protobuf.Parser; import org.apache.kafka.common.errors.SerializationException; import org.apache.kafka.common.serialization.Deserializer; import java.util.Map; public class ProtobufDeserializer<T extends MessageLite> implements Deserializer<T> { private Parser<T> parser; @Override public void configure(Map<String, ?> configs, boolean isKey) { parser = (Parser<T>) configs.get("parser"); } @Override public T deserialize(String topic, byte[] data) { try { return parser.parseFrom(data); } catch (InvalidProtocolBufferException e) { throw new SerializationException("Failed to deserialize from a protobuf byte array.", e); } } }
最后是ProtobufSerdes.java:
package huxihx.kafkastreams.serdes; import com.google.protobuf.MessageLite; import com.google.protobuf.Parser; import org.apache.kafka.common.serialization.Deserializer; import org.apache.kafka.common.serialization.Serde; import org.apache.kafka.common.serialization.Serializer; import java.util.HashMap; import java.util.Map; public class ProtobufSerdes<T extends MessageLite> implements Serde<T> { private final Serializer<T> serializer; private final Deserializer<T> deserializer; public ProtobufSerdes(Parser<T> parser) { serializer = new ProtobufSerializer<>(); deserializer = new ProtobufDeserializer<>(); Map<String, Parser<T>> config = new HashMap<>(); config.put("parser", parser); deserializer.configure(config, false); } @Override public Serializer<T> serializer() { return serializer; } @Override public Deserializer<T> deserializer() { return deserializer; } }
6. 开发主流程
创建RunningAverage.java来执行平均分输的计算。注意代码中的getRatingAverageTable方法是如何计算平均分数的。
package huxihx.kafkastreams; import com.typesafe.config.Config; import com.typesafe.config.ConfigFactory; import huxihx.kafkastreams.proto.Countsum; import huxihx.kafkastreams.proto.RatingOuterClass; import huxihx.kafkastreams.serdes.ProtobufSerdes; import org.apache.kafka.clients.admin.AdminClient; import org.apache.kafka.clients.admin.AdminClientConfig; import org.apache.kafka.clients.admin.NewTopic; import org.apache.kafka.clients.admin.TopicListing; import org.apache.kafka.clients.consumer.ConsumerConfig; import org.apache.kafka.common.serialization.Serdes; import org.apache.kafka.streams.KafkaStreams; import org.apache.kafka.streams.KeyValue; import org.apache.kafka.streams.StreamsBuilder; import org.apache.kafka.streams.StreamsConfig; import org.apache.kafka.streams.Topology; import org.apache.kafka.streams.kstream.Consumed; import org.apache.kafka.streams.kstream.Grouped; import org.apache.kafka.streams.kstream.KGroupedStream; import org.apache.kafka.streams.kstream.KStream; import org.apache.kafka.streams.kstream.KTable; import org.apache.kafka.streams.kstream.Materialized; import java.time.Duration; import java.util.ArrayList; import java.util.Collection; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.Properties; import java.util.concurrent.CountDownLatch; import java.util.stream.Collectors; import java.util.stream.Stream; public class RunningAverage { private static ProtobufSerdes<RatingOuterClass.Rating> ratingSerdes() { return new ProtobufSerdes<>(RatingOuterClass.Rating.parser()); } private static ProtobufSerdes<Countsum.CountAndSum> countAndSumSerdes() { return new ProtobufSerdes<>(Countsum.CountAndSum.parser()); } public static void main(String[] args) throws Exception { new RunningAverage().runRecipe(); } private Properties loadEnvProperties() { final Config load = ConfigFactory.load(); final Map<String, Object> map = load.entrySet().stream() .filter(entry -> Stream.of("java", "user", "sun", "os", "http", "ftp", "file", "line", "awt", "gopher", "socks", "path") .noneMatch(s -> entry.getKey().startsWith(s))) .peek(filteredEntry -> System.out.println(filteredEntry.getKey() + ": " + filteredEntry.getValue().unwrapped())) .collect(Collectors.toMap(Map.Entry::getKey, y -> y.getValue().unwrapped())); Properties props = new Properties(); props.putAll(map); return props; } private void runRecipe() throws Exception { Properties envProps = this.loadEnvProperties(); Properties streamProps = this.createStreamsProperties(envProps); Topology topology = this.buildTopology(new StreamsBuilder(), envProps); this.preCreateTopics(envProps); final KafkaStreams streams = new KafkaStreams(topology, streamProps); final CountDownLatch latch = new CountDownLatch(1); Runtime.getRuntime().addShutdownHook(new Thread("streams-shutdown-hook") { @Override public void run() { streams.close(Duration.ofSeconds(5)); latch.countDown(); } }); try { streams.cleanUp(); streams.start(); latch.await(); } catch (Throwable e) { System.exit(1); } System.exit(0); } private static KTable<Long, Double> getRatingAverageTable(KStream<Long, RatingOuterClass.Rating> ratings, String avgRatingsTopicName, ProtobufSerdes<Countsum.CountAndSum> countAndSumSerdes) { KGroupedStream<Long, Double> ratingsById = ratings .map((key, rating) -> new KeyValue<>(rating.getMovieId(), rating.getRating())) .groupByKey(Grouped.with(Serdes.Long(), Serdes.Double())); final KTable<Long, Countsum.CountAndSum> ratingCountAndSum = ratingsById.aggregate(() -> Countsum.CountAndSum.newBuilder().setCount(0L).setSum(0.0D).build(), (key, value, aggregate) -> Countsum.CountAndSum.newBuilder().setCount(aggregate.getCount() + 1).setSum(aggregate.getSum() + value).build(), Materialized.with(Serdes.Long(), countAndSumSerdes)); final KTable<Long, Double> ratingAverage = ratingCountAndSum.mapValues(value -> value.getSum() / value.getCount(), Materialized.as("average-ratings")); ratingAverage.toStream().to(avgRatingsTopicName); return ratingAverage; } private Topology buildTopology(StreamsBuilder builder, Properties envProps) { final String ratingTopicName = envProps.getProperty("input.ratings.topic.name"); final String avgRatingsTopicName = envProps.getProperty("output.rating-averages.topic.name"); KStream<Long, RatingOuterClass.Rating> ratingStream = builder.stream(ratingTopicName, Consumed.with(Serdes.Long(), ratingSerdes())); getRatingAverageTable(ratingStream, avgRatingsTopicName, countAndSumSerdes()); return builder.build(); } private static void preCreateTopics(Properties envProps) throws Exception { Map<String, Object> config = new HashMap<>(); config.put(AdminClientConfig.BOOTSTRAP_SERVERS_CONFIG, envProps.getProperty("bootstrap.servers")); String inputTopic = envProps.getProperty("input.ratings.topic.name"); String outputTopic = envProps.getProperty("output.rating-averages.topic.name"); try (AdminClient client = AdminClient.create(config)) { Collection<TopicListing> existingTopics = client.listTopics().listings().get(); List<NewTopic> topics = new ArrayList<>(); List<String> topicNames = existingTopics.stream().map(TopicListing::name).collect(Collectors.toList()); if (!topicNames.contains(inputTopic)) topics.add(new NewTopic( inputTopic, Integer.parseInt(envProps.getProperty("input.ratings.topic.partitions")), Short.parseShort(envProps.getProperty("input.ratings.topic.replication.factor")))); if (!topicNames.contains(outputTopic)) topics.add(new NewTopic( outputTopic, Integer.parseInt(envProps.getProperty("output.rating-averages.topic.partitions")), Short.parseShort(envProps.getProperty("output.rating-averages.topic.replication.factor")))); if (!topics.isEmpty()) client.createTopics(topics).all().get(); } } private Properties createStreamsProperties(Properties envProps) { Properties props = new Properties(); props.putAll(envProps); props.put(StreamsConfig.APPLICATION_ID_CONFIG, envProps.getProperty("application.id")); props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, envProps.getProperty("bootstrap.servers")); props.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.Long().getClass()); props.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.Double().getClass()); props.put(StreamsConfig.CACHE_MAX_BYTES_BUFFERING_CONFIG, 0); props.put(StreamsConfig.REPLICATION_FACTOR_CONFIG, envProps.getProperty("default.topic.replication.factor")); props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, envProps.getProperty("offset.reset.policy")); return props; } }
7. 编写测试Producer
现在创建src/main/java/huxihx/kafkastreams/tests/TestProducer.java,代码如下:
package huxihx.kafkastreams.tests; import huxihx.kafkastreams.proto.RatingOuterClass; import huxihx.kafkastreams.serdes.ProtobufSerializer; import org.apache.kafka.clients.producer.KafkaProducer; import org.apache.kafka.clients.producer.Producer; import org.apache.kafka.clients.producer.ProducerConfig; import org.apache.kafka.clients.producer.ProducerRecord; import java.util.Properties; public class TestProducer { public static void main(String[] args) { Properties props = new Properties(); props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092"); props.put(ProducerConfig.ACKS_CONFIG, "all"); props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer"); props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, new ProtobufSerializer<RatingOuterClass.Rating>().getClass()); try (final Producer<String, RatingOuterClass.Rating> producer = new KafkaProducer<>(props)) { ProducerRecord<String, RatingOuterClass.Rating> event = new ProducerRecord<>("ratings", RatingOuterClass.Rating.newBuilder().setMovieId(362).setRating(Double.valueOf(args[0])).build()); producer.send(event, ((metadata, exception) -> { if (exception != null) { exception.printStackTrace(); } })); } } }
这个测试Producer通过命令行参数的方式指定电影的分数。
8. 测试
首先我们运行下列命令构建项目:
$ ./gradlew shadowJar
然后启动Kafka集群,之后运行Kafka Streams应用:
$ java -Dconfig.file=configuration/dev.properties -jar build/libs/aggregating-average-standalone-0.0.1.jar
现在启动一个终端打开console consumer:
$ bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --from-beginning --group test-group --topic rating-averages --value-deserializer org.apache.kafka.common.serialization.DoubleDeserializer
由于平均分数使用Double类型表示,因此console consumer必须指定消息体的deserializer为DoubleDeserializer。
之后在aggregating-average路径下打开终端,多次运行TestProducer生成电影分数:
$ java -cp build/libs/aggregating-average-standalone-0.0.1.jar huxihx.kafkastreams.tests.TestProducer 9.6 $ java -cp build/libs/aggregating-average-standalone-0.0.1.jar huxihx.kafkastreams.tests.TestProducer 9.7 $ java -cp build/libs/aggregating-average-standalone-0.0.1.jar huxihx.kafkastreams.tests.TestProducer 8.6
此时,回到console consumer的终端,你应该可以看到下面的输出:
9.6 9.65 9.3
这表明,Kafka Streams app能够正确地实时计算电影的平均分数。