zoukankan      html  css  js  c++  java
  • 【原创】Kafka Consumer多线程消费

    上一篇《Kafka Consumer多线程实例续篇》修正了多线程提交位移的问题,但依然可能出现数据丢失的情况,原因在于多个线程可能拿到相同分区的数据,而消费的顺序会破坏消息本身在分区中的顺序,因而扰乱位移的提交。这次我使用KafkaConsumer的pause和resume方法来防止这种情形的发生。另外,本次我会编写一个测试类用于验证消费相同数量消息时,单线程消费速度要远逊于多线程消费。

    概述 

    这一次,我编写了5个java文件,它们分别是:

    • OrdinaryConsumer.java:普通的单线程Consumer,用于后面进行性能测试对比用。
    • ConsumerWorker.java:多线程消息处理类,本质上就是一个Runnable。会被提交给线程池用于实际消息处理。
    • MultiThreadedConsumer.java:多线程Consumer主控类,用于将消息分配给不同的ConsumerWorker,并且管理位移的提交。
    • MultiThreadedRebalanceListener.java:为多线程Consumer服务的Rebalance监听器。
    • Test.java:用于测试单线程和多线程性能。

    OrdinaryConsumer类

    单线程的Consumer最简单,我首先给出它的代码:

    package huxihx.mtc;
    
    import org.apache.kafka.clients.consumer.Consumer;
    import org.apache.kafka.clients.consumer.ConsumerConfig;
    import org.apache.kafka.clients.consumer.ConsumerRecord;
    import org.apache.kafka.clients.consumer.ConsumerRecords;
    import org.apache.kafka.clients.consumer.KafkaConsumer;
    import org.apache.kafka.common.serialization.StringDeserializer;
    
    import java.time.Duration;
    import java.util.Collections;
    import java.util.Properties;
    import java.util.concurrent.ThreadLocalRandom;
    
    /**
     * 单线程Consumer
     */
    public class OrdinaryConsumer {
    
        private final Consumer<String, String> consumer;
        private final int expectedCount; // 用于测试的消息数量
    
        public OrdinaryConsumer(String brokerId, String topic, String groupID, int expectedCount) {
            Properties props = new Properties();
            props.setProperty(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, brokerId);
            props.setProperty(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
            props.setProperty(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
            props.setProperty(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "true");
            props.setProperty(ConsumerConfig.GROUP_ID_CONFIG, groupID);
            props.setProperty(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
            consumer = new KafkaConsumer<>(props);
            consumer.subscribe(Collections.singletonList(topic));
            this.expectedCount = expectedCount;
        }
    
        public void run() {
            try {
                int alreadyConsumed = 0;
                while (alreadyConsumed < expectedCount) {
                    ConsumerRecords<String, String> records = consumer.poll(Duration.ofSeconds(1));
                    alreadyConsumed += records.count();
                    records.forEach(this::handleRecord);
                }
            } finally {
                consumer.close();
            }
        }
    
        private void handleRecord(ConsumerRecord<String, String> record) {
            try {
                // 模拟每条消息10毫秒处理
                Thread.sleep(ThreadLocalRandom.current().nextInt(10));
            } catch (InterruptedException ignored) {
                Thread.currentThread().interrupt();
            }
            System.out.println(Thread.currentThread().getName() + " finished message processed. Record offset = " + record.offset());
        }
    } 

     代码很简单,没什么可说的。唯一要说的是Consumer会模拟10毫秒处理一条事件。后面多线程Consumer我们也会使用相同的标准。

    ConsumerWorker.java

    接下来是消息处理的Runnable类:ConsumerWorker。和上一篇相比,这次最大的不同在于每个Worker只处理相同分区下的消息,而不是向之前那样处理多个分区中的消息。这样做的好处在于一旦某个分区的消息分配给了这个Worker,我可以暂停这个分区的可消费状态,直到这个Worker全部处理完成。如果是混着多个分区的消息一起处理,实现这个就比较困难。ConsumerWorker代码如下:

    package huxihx.mtc;
    
    import org.apache.kafka.clients.consumer.ConsumerRecord;
    
    import java.util.List;
    import java.util.concurrent.CompletableFuture;
    import java.util.concurrent.ThreadLocalRandom;
    import java.util.concurrent.TimeUnit;
    import java.util.concurrent.atomic.AtomicLong;
    import java.util.concurrent.locks.ReentrantLock;
    
    public class ConsumerWorker<K, V> {
    
        private final List<ConsumerRecord<K, V>> recordsOfSamePartition;
        private volatile boolean started = false;
        private volatile boolean stopped = false;
        private final ReentrantLock lock = new ReentrantLock();
    
        private final long INVALID_COMMITTED_OFFSET = -1L;
        private final AtomicLong latestProcessedOffset = new AtomicLong(INVALID_COMMITTED_OFFSET);
        private final CompletableFuture<Long> future = new CompletableFuture<>();
    
        public ConsumerWorker(List<ConsumerRecord<K, V>> recordsOfSamePartition) {
            this.recordsOfSamePartition = recordsOfSamePartition;
        }
    
        public boolean run() {
            lock.lock();
            if (stopped)
                return false;
            started = true;
            lock.unlock();
            for (ConsumerRecord<K, V> record : recordsOfSamePartition) {
                if (stopped)
                    break;
                handleRecord(record);
                if (latestProcessedOffset.get() < record.offset() + 1)
                    latestProcessedOffset.set(record.offset() + 1);
            }
            return future.complete(latestProcessedOffset.get());
        }
    
        public long getLatestProcessedOffset() {
            return latestProcessedOffset.get();
        }
    
        private void handleRecord(ConsumerRecord<K, V> record) {
            try {
                Thread.sleep(ThreadLocalRandom.current().nextInt(10));
            } catch (InterruptedException ignored) {
                Thread.currentThread().interrupt();
            }
            System.out.println(Thread.currentThread().getName() + " finished message processed. Record offset = " + record.offset());
        }
    
        public void close() {
            lock.lock();
            this.stopped = true;
            if (!started) {
                future.complete(latestProcessedOffset.get());
            }
            lock.unlock();
        }
    
        public boolean isFinished() {
            return future.isDone();
        }
    
        public long waitForCompletion(long timeout, TimeUnit timeUnit) {
            try {
                return future.get(timeout, timeUnit);
            } catch (Exception e) {
                if (e instanceof InterruptedException)
                    Thread.currentThread().interrupt();
                return INVALID_COMMITTED_OFFSET;
            }
        }
    }
    

    需要说明的地方有以下几点:

    • latestProcessedOffset:使用这个变量保存该Worker当前已消费的最新位移。
    • future:使用CompletableFuture来保存Worker要提交的位移。
    • Worker成功操作与否的标志就是看这个future是否将latestProcessedOffset值封装到结果中。
    • handleRecord和单线程Consumer中的一致,模拟10ms处理消息。

    MultiThreadedConsumer.java

    构建好了ConsumerWorker类之后,下面是编写多线程Consumer的主控类,该类循环执行:1、创建Consumer;2、读取订阅分区的消息;3、将消息按照不同分区进行归组分发给不同的线程;4、暂停这些分区的后续消费,同时等待Worker线程完成消息处理;5、提交这些分区的位移;6、恢复这些分区的消费。

    以下代码是MultiThreadedConsumer类的完整代码:

    package huxihx.mtc;
    
    import org.apache.kafka.clients.consumer.Consumer;
    import org.apache.kafka.clients.consumer.ConsumerConfig;
    import org.apache.kafka.clients.consumer.ConsumerRecord;
    import org.apache.kafka.clients.consumer.ConsumerRecords;
    import org.apache.kafka.clients.consumer.KafkaConsumer;
    import org.apache.kafka.clients.consumer.OffsetAndMetadata;
    import org.apache.kafka.common.TopicPartition;
    import org.apache.kafka.common.serialization.StringDeserializer;
    
    import java.time.Duration;
    import java.util.Collections;
    import java.util.HashMap;
    import java.util.HashSet;
    import java.util.List;
    import java.util.Map;
    import java.util.Properties;
    import java.util.Set;
    import java.util.concurrent.CompletableFuture;
    import java.util.concurrent.Executor;
    import java.util.concurrent.Executors;
    
    public class MultiThreadedConsumer {
    
        private final Map<TopicPartition, ConsumerWorker<String, String>> outstandingWorkers = new HashMap<>();
        private final Map<TopicPartition, OffsetAndMetadata> offsetsToCommit = new HashMap<>();
        private long lastCommitTime = System.currentTimeMillis();
        private final Consumer<String, String> consumer;
        private final int DEFAULT_COMMIT_INTERVAL = 3000;
        private final Map<TopicPartition, Long> currentConsumedOffsets = new HashMap<>();
        private final long expectedCount;
    
        private final static Executor executor = Executors.newFixedThreadPool(
                Runtime.getRuntime().availableProcessors() * 10, r -> {
                    Thread t = new Thread(r);
                    t.setDaemon(true);
                    return t;
                });
    
        public MultiThreadedConsumer(String brokerId, String topic, String groupID, long expectedCount) {
            Properties props = new Properties();
            props.setProperty(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, brokerId);
            props.setProperty(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
            props.setProperty(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
            props.setProperty(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "false");
            props.setProperty(ConsumerConfig.GROUP_ID_CONFIG, groupID);
            props.setProperty(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
            consumer = new KafkaConsumer<>(props);
            consumer.subscribe(Collections.singletonList(topic), new MultiThreadedRebalanceListener(consumer, outstandingWorkers, offsetsToCommit));
            this.expectedCount = expectedCount;
        }
    
        public void run() {
            try {
                while (true) {
                    ConsumerRecords<String, String> records = consumer.poll(Duration.ofSeconds(1));
                    distributeRecords(records);
                    checkOutstandingWorkers();
                    commitOffsets();
                    if (currentConsumedOffsets.values().stream().mapToLong(Long::longValue).sum() >= expectedCount) {
                        break;
                    }
                }
            } finally {
                consumer.close();
            }
        }
    
        /**
         * 对已完成消息处理并提交位移的分区执行resume操作
         */
        private void checkOutstandingWorkers() {
            Set<TopicPartition> completedPartitions = new HashSet<>();
            outstandingWorkers.forEach((tp, worker) -> {
                if (worker.isFinished()) {
                    completedPartitions.add(tp);
                }
                long offset = worker.getLatestProcessedOffset();
                currentConsumedOffsets.put(tp, offset);
                if (offset > 0L) {
                    offsetsToCommit.put(tp, new OffsetAndMetadata(offset));
                }
            });
            completedPartitions.forEach(outstandingWorkers::remove);
            consumer.resume(completedPartitions);
        }
    
        /**
         * 提交位移
         */
        private void commitOffsets() {
            try {
                long currentTime = System.currentTimeMillis();
                if (currentTime - lastCommitTime > DEFAULT_COMMIT_INTERVAL && !offsetsToCommit.isEmpty()) {
                    consumer.commitSync(offsetsToCommit);
                    offsetsToCommit.clear();
                }
                lastCommitTime = currentTime;
            } catch (Exception e) {
                e.printStackTrace();
            }
        }
    
        /**
         * 将不同分区的消息交由不同的线程,同时暂停该分区消息消费
         * @param records
         */
        private void distributeRecords(ConsumerRecords<String, String> records) {
            if (records.isEmpty())
                return;
            Set<TopicPartition> pausedPartitions = new HashSet<>();
            records.partitions().forEach(tp -> {
                List<ConsumerRecord<String, String>> partitionedRecords = records.records(tp);
                pausedPartitions.add(tp);
                final ConsumerWorker<String, String> worker = new ConsumerWorker<>(partitionedRecords);
                CompletableFuture.supplyAsync(worker::run, executor);
                outstandingWorkers.put(tp, worker);
            });
            consumer.pause(pausedPartitions);
        }
    }  

     该类代码需要说明的地方包括:

    • executor:我创建了一个包含10倍CPU核数的线程数。具体线程数根据你自己的业务需求而定。如果你的事件处理逻辑是I/O密集型操作(比如写入外部系统),那么设置一个大一点的线程数通常都是有意义的。当然,我个人觉得最好不要超过Consumer分配到的总分区数。
    • 一定要将自动提交位移的参数设置为false。多线程Consumer的一个关键设计就是要手动提交位移。
    • Rebalance监听器设置为MultiThreadedRebalanceListener。这个类如何响应分区的回收与分配我们稍后讨论。
    • run方法的逻辑基本上遵循了上面提到的流程:消息获取 -> 分发 -> 检查消费进度 -> 提交位移
    • expectedCount:这是为了后面进行性能测试比对用到的总消息消费数。

    MultiThreadedRebalanceListener.java

    多线程Consumer在Rebalance操作开启后要小心处理。首先,主线程的poll方法与Worker线程处理消息是并行执行的。此时如果发生Rebalance,那么有些分区就会被分配给其他Consumer,但Worker线程依然可能正在处理这些分区。因此,就可能出现这样的场景:两个Consumer都会处理这些分区中的消息。这就破坏了消费者组的设计理念。针对这种情况,我们必须要确保要被回收的那些分区的处理必须首先完成,之后才能被重新分配。

    总体而言,在要回收分区前,多线程Consumer必须完成:

    1. 停止对应的Worker线程
    2. 提交位移

    当然,一旦分区被重新分配后,事情就变得简单了,我们调用resume恢复这些分区的可消费状态即可。如果这些分区之前就是可以消费的,那么调用resume方法就没有任何效果,总之是一个“无害”操作。MultiThreadedRebalanceListener类完整代码如下:

    package huxihx.mtc;
    
    import org.apache.kafka.clients.consumer.Consumer;
    import org.apache.kafka.clients.consumer.ConsumerRebalanceListener;
    import org.apache.kafka.clients.consumer.OffsetAndMetadata;
    import org.apache.kafka.common.TopicPartition;
    
    import java.util.Collection;
    import java.util.HashMap;
    import java.util.Map;
    import java.util.concurrent.TimeUnit;
    
    public class MultiThreadedRebalanceListener implements ConsumerRebalanceListener {
    
        private final Consumer<String, String> consumer;
        private final Map<TopicPartition, ConsumerWorker<String, String>> outstandingWorkers;
        private final Map<TopicPartition, OffsetAndMetadata> offsets;
    
        public MultiThreadedRebalanceListener(Consumer<String, String> consumer,
                                              Map<TopicPartition, ConsumerWorker<String, String>> outstandingWorkers,
                                              Map<TopicPartition, OffsetAndMetadata> offsets) {
            this.consumer = consumer;
            this.outstandingWorkers = outstandingWorkers;
            this.offsets = offsets;
        }
    
        @Override
        public void onPartitionsRevoked(Collection<TopicPartition> partitions) {
            Map<TopicPartition, ConsumerWorker<String, String>> stoppedWorkers = new HashMap<>();
            for (TopicPartition tp : partitions) {
                ConsumerWorker<String, String> worker = outstandingWorkers.remove(tp);
                if (worker != null) {
                    worker.close();
                    stoppedWorkers.put(tp, worker);
                }
            }
    
            stoppedWorkers.forEach((tp, worker) -> {
                long offset = worker.waitForCompletion(1, TimeUnit.SECONDS);
                if (offset > 0L) {
                    offsets.put(tp, new OffsetAndMetadata(offset));
                }
            });
    
            Map<TopicPartition, OffsetAndMetadata> revokedOffsets = new HashMap<>();
            partitions.forEach(tp -> {
                OffsetAndMetadata offset = offsets.remove(tp);
                if (offset != null) {
                    revokedOffsets.put(tp, offset);
                }
            });
    
            try {
                consumer.commitSync(revokedOffsets);
            } catch (Exception e) {
                e.printStackTrace();
            }
        }
    
        @Override
        public void onPartitionsAssigned(Collection<TopicPartition> partitions) {
            consumer.resume(partitions);
        }
    }
    

    该类代码需要说明的地方包括:

    • 任何Rebalance监听器都要实现ConsumerRebalanceListener接口。
    • 该类定义了3个字段,分别保存Consumer实例、要停掉的Worker线程实例以及要提交的位移数据。
    • 主要的逻辑在onPartitionsRevoked方法中实现。第一步是停掉Worker线程;第二步是手动提交位移。

    Test.java

    说完了以上4个Java类之后,现在我们编写一个测试类来比较单线程Consumer和多线程Consumer的性能对比。首先我们创建一个topic,50个分区,单副本,并使用kafka-producer-perf-test工具创建5万条消息,每个分区1000条。之后编写如下代码分别测试两个Consumer的消费耗时:

    package huxihx.mtc;
    
    public class Test {
        public static void main(String[] args) throws InterruptedException {
            int expectedCount = 50 * 900;
            String brokerId = "localhost:9092";
            String groupId = "test-group";
            String topic = "test";
    
            OrdinaryConsumer consumer = new OrdinaryConsumer(brokerId, topic, groupId + "-single", expectedCount);
            long start = System.currentTimeMillis();
            consumer.run();
            System.out.println("Single-threaded consumer costs " + (System.currentTimeMillis() - start));
    
            Thread.sleep(1L);
    
            MultiThreadedConsumer multiThreadedConsumer =
                    new MultiThreadedConsumer(brokerId, topic, groupId + "-multi", expectedCount);
            start = System.currentTimeMillis();
            multiThreadedConsumer.run();
            System.out.println("Multi-threaded consumer costs " + (System.currentTimeMillis() - start));
        }
    }
    

    最后结果显示。单线程Consumer消费45000条消息共耗时232秒,而多线程Consumer耗时6.2秒,如下:

    Single-threaded consumer costs 232336

    Multi-threaded consumer costs 6246

    显然,采用多线程Consumer的消费性能大约是单线程Consumer的37倍。当然实际的提升效果依具体环境而定。不过结论是肯定的,多线程Consumer在CPU核数很多且消息处理逻辑为I/O密集型操作的情形下会比单线程Consumer表现更好。

  • 相关阅读:
    类的继承,抽象类和接口
    什么是CGI、FastCGI、PHP-CGI、PHP-FPM、Spawn-FCGI?
    php 中 SERVER 服务器参数
    数组与对象互换方法
    php实现二维数组查找功能【array_search 和 array_column】
    php基础知识点列表【2020年10月7日】
    json_encode 中文及特殊斜杆的编码
    吴裕雄--天生自然ANDROID开发学习:2.5.8 Notification(状态栏通知)详解
    吴裕雄--天生自然ANDROID开发学习:2.5.7 Toast(吐司)的基本使用
    吴裕雄--天生自然ANDROID开发学习:2.5.6 ViewFlipper(翻转视图)的基本使用
  • 原文地址:https://www.cnblogs.com/huxi2b/p/13668061.html
Copyright © 2011-2022 走看看