Given inorder and postorder traversal of a tree, construct the binary tree.
Note:
You may assume that duplicates do not exist in the tree.
解题思路:
给出一个二叉树的中序和后序遍历结果,还原这个二叉树。
对于一个二叉树:
1 / 2 3 / / 4 5 6 7
后序遍历结果为:4 5 2 6 7 3 1
中序遍历结果为:4 2 5 1 6 3 7
由此可以发现规律:
1、后序遍历的最后一个字符,就是根结点(1)
2、发现根节点后,对应在中序遍历中的位置,则在中序遍历队列中,根节点左边的元素构成根的左子树,根的右边元素构成根的右子树;
3、递归的将左右子树也按照上述规律进行构造,最终还原二叉树。
代码:
1 /** 2 * Definition for a binary tree node. 3 * struct TreeNode { 4 * int val; 5 * TreeNode *left; 6 * TreeNode *right; 7 * TreeNode(int x) : val(x), left(NULL), right(NULL) {} 8 * }; 9 */ 10 11 class Solution { 12 public: 13 TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) { 14 return buildSubtree(postorder, inorder, 0, 15 postorder.size()-1, 16 0, inorder.size()-1); 17 } 18 19 TreeNode* buildSubtree(vector<int>& postorder, vector<int>& inorder, 20 int p_left, int p_right, int i_left, int i_right) { 21 if (p_left > p_right || i_left > i_right) 22 return NULL; 23 24 int root = postorder[p_right]; 25 TreeNode* node = new TreeNode(postorder[p_right]); 26 27 int range = 0; 28 for (int j = i_left; j <= i_right; ++j) { 29 if (root == inorder[j]) { 30 range = j - i_left; 31 break; 32 } 33 } 34 35 node->left = buildSubtree(postorder, inorder, 36 p_left, p_left + range - 1, 37 i_left, i_left + range - 1); 38 node->right = buildSubtree(postorder, inorder, 39 p_left + range, p_right - 1, 40 i_left + range + 1, i_right); 41 return node; 42 } 43 };