zoukankan      html  css  js  c++  java
  • hive的高级查询(group by、 order by、 join 、 distribute by、sort by、 clusrer by、 union all等)

    查询操作

    group by、 order by、 join 、 distribute by、
    sort by、 clusrer by、 union all

    底层的实现

    mapreduce

    常见的聚合操作

    count计数

    count(*)    所有值不全为NULL时,加1操作
    count(1)    不管有没有值,只要有这条记录,值就加1
    count(col)  col列里面的值为null,值不会加1,这个列里面的值不为NULL,才加1

    sum求和

    sum(可转成数字的值)  返回bigint

    avg求平均值

    avg(可转成数字的值)返回double

    distinct不同值个数

    count(distinct col)

    order by

    按照某些字段排序 样例

    select col1,other...
    from table
    where conditio
    order by col1,col2 [asc|desc]

    注意 order by后面可以有多列进行排序,默认按字典排序 order by为全局排序 order by需要reduce操作,且只有一个reduce,与配置无关。数据量很大时,慎用。

    执行流程

    从表中读取数据,执行where条件,以col1,col2列的值做成组合key,其他列值作为value,然后在把数据传到同一个reduce中,根据需要的排序方式进行。

    group by

    按照某些字段的值进行分组,有相同值放到一起。

    样例

    select col1 [,col2] ,count(1),sel_expr(聚合操作)from table
    where condition         -->Map端执行
    group by col1 [,col2]   -->Reduce端执行
    [having]                -->Reduce端执行

    注意 select后面非聚合列,必须出现在group by中 select后面除了普通列就是一些聚合操作 group by后面也可以跟表达式,比如substr(col)

    特性 使用了reduce操作,受限于reduce数量,设置reduce参数mapred.reduce.tasks 输出文件个数与reduce数相同,文件大小与reduce处理的数据量有关。

    问题 网络负载过重 数据倾斜,优化参数hive.groupby.skewindata为true,会启动一个优化程序,避免数据倾斜。

    执行流程

    从表中读取数据,执行where条件,以col1列分组,把col列的内容作为key,其他列值作为value,上传到reduce,在reduce端执行聚合操作和having过滤。

    eg:

    set mapred.reduce.tasks=5;
    select * from TabOrder order by ch asc,num desc;
    
    set mapred.reduce.tasks=3;
    select ch ,count(1) as num from TabOrder group by ch;
    
    set hive.groupby.skewindata = true;
    select ch ,count(1) as num from TabOrder group by ch having count(1)>2;
    
    select col from tablename group by col; <==> select distinct col from tablename;

    Join表连接

    两个表m,n之间按照on条件连接,m中的一条记录和n中的一条记录组成一条新记录。

    join等值连接(内连接),只有某个值在m和n中同时存在时。

    left outer join左外连接,左边表中的值无论是否在b中存在时,都输出;右边表中的值,只有在左边表中存在时才输出。

    right outer joinleft outer join相反。

    left semi join类似exists。即查找a表中的数据,是否在b表中存在,找出存在的数据。

    mapjoin:在map端完成join操作,不需要用reduce,基于内存做join,属于优化操作。

    select m.col as col1, m.col2 as col2, n.col3 as col3 from
    (select col1,col2 from,test where ...   (map端执行)
    )m  (左表)
    [left outer |right outer | left semi] join
    n   (右表)
    on m.col=n.col
    where condition     (reduced端执行)
    
    set hive.optimize.skewjoin=true;

    读取数据执行where条件,按col列分组,把col列的内容作为key,其他列作为value,传到reduce,在reduce端执行连接操作和where过滤。

    eg:

    create table m(
    ch string,
    num string
    )
    row format delimited 
    fields terminated by '	' 
    lines terminated by '
    ' 
    stored as textfile;
    load data local inpath '/liguodong/hivedata/m' into table m;
    create table n(
    ch string,
    num string
    )
    row format delimited 
    fields terminated by '	' 
    lines terminated by '
    ' 
    stored as textfile;
    load data local inpath '/liguodong/hivedata/n' into table n;
    select * from m;
    select * from n;
    
    内连接
    select s.ch,s.num,t.num from
    (select ch,num from m)s
    join
    (select ch,num from n)t
    on s.ch=t.ch;
    
    左外连接
    select s.ch,s.num,t.num from
    (select ch,num from m)s
    left outer  join
    (select ch,num from n)t
    on s.ch=t.ch;
    
    右外连接
    select s.ch,s.num,t.num from
    (select ch,num from m)s
    right outer  join
    (select ch,num from n)t
    on s.ch=t.ch;

    数据输出对比

    select s.ch,s.num from
    (select ch,num from m)s
    left semi join
    (select ch,num from n)t
    on s.ch=t.ch;
    
    运行结果:
    A       1
    C       5
    C       3

    MapJoin

    mapjoin(map side join) 在map端把小表加载到内存中,然后读取大表,和内存中的小表完成连接操作。其中使用了分布式缓存技术。

    优点 不消耗集群的reduce资源(reduce相对紧缺)。 减少了reduce操作,加快程序执行。 降低网络负载。

    缺点 占用部分内存,所以加载到内存中的表不能过大,因为每个计算节点都会加载一次。 生成较多的小文件。

    执行流程

    从大表读取数据,执行where条件。把小表加载到内存中,每读取大表中的一条数据,都要和内存中的小表数据进行比较。

    第一种方式,自动方式 配置以下参数 hive**自动**根据sql,选择使用common join或者map join

    set hive.auto.convert.join=true;
    hive.mapjoin.smalltable.filesize默认值是25mb

    第二种方式,手动指定

    select /*+mapjoin(n)*/ m.col, m.col2, n.col3 from m
    join n on m.col=n.col;

    注意:/*+mapjoin(n)*/不能省略,只需替换表名n值即可。

    简单总结一下,map join的使用场景: 1、关联操作中有一张表非常小 2、不等值的链接操作

    select c.city,p.province 
    from
    (select province,city from city)c
    join
    (select province from province)p
    on c.province=p.province;
    
    mapjoin手动方式
    select /*+mapjoin(p)*/ c.city,p.province 
    from
    (select province,city from city)c
    join
    (select province from province)p
    on c.province=p.province;

    比较二则的比较时间。

    Hive分桶JOIN 对于每一个表(table)或者分区,Hive可以进一步组织成桶,也就是说桶是更为细粒度的数据范围划分。 Hive是针对某一列进行分桶。 Hive采用对列值哈希,然后除以桶的个数求余的方式决定该条记录存放在哪个桶当中。 好处 获得更高的查询处理效率。 使取样(sampling)更高效。

    create table bucketed_user
    (
    id  int,
    name  string
    )
    clustered by (id) sorted by (name) into 4 buckets
    row format delimited fields terminated by '	' 
    stored as textfile;
    
    set hive.enforce.bucketing=true;

    分桶的使用

    select * from bucketed_user tablesample(bucket 1 out of 2 on id)

    bucket join

    set hive.optimize.bucketmapjoin=true;
    set hive.optimize.bucketmapjoin.sortedmerge=true;
    set hive.input.format=org.apache.hadoop.hive.ql.io.BucketizedHiveInputFormat;

    连接两个在(包含连接列)相同列上划分了桶的表,可以使用Map端连接(Map side join)高效的实现。比如JOIN操作。 对于JOIN操作两个表有一个相同的列,如果对这两个表都进行了捅操作。那么将保存相同列值的桶进行JOIN操作就可以,可以大大减少JOIN的数据量。 对于map端连接的情况,两个表以相同方式划分桶。处理左边表内某个桶的mapper知道右边表内相匹配的行在对应的桶内。因此,mapper只需要获取那个桶(这只是右边表内存储数据的·小部分)即可进行连接。 这一优化方法并不一定要求两个表必须桶的个数相同,两个表的桶个数是倍数关系也可以。

    distribute by、sort by

    distribute 分散数据 distribute by col – 按照col列把数据分散到不同的reduce。

    Sort排序 sort by col – 按照col列把数据排序

    select col1,col2 from M
    distribute by col1
    sort by col1 asc,col2 desc

    两者结合出现,确保每个reduce的输出都是有序的。

    distribute by与group by对比

    都是按key值划分数据 都使用reduce操作 **唯一不同的是**distribute by只是单纯的分散数据,而group by把相同key的数据聚集到一起,后续必须是聚合操作。

    order by与sort by 对比

    order by是全局排序 sort by只是确保每个reduce上面输出的数据有序。如果只有一个reduce时,和order by作用一样。

    执行流程

    从表中读取数据,执行where条件。 设置reduce数为3,以distribute by列的值作为key,其他列值作为value,然后把数据根据key值传到不同的reduce,然后按sort by字段进行排序。

    应用场景 map输出的文件大小不均 reduce输出文件大小不均 小文件过多 文件超大

    把一个大文件放到一些小文件中
    set mapred.reduce.tasks=5;-->下面的city将会输出到五个文件中
    
    insert overwrite table city
    selsct time,country,province,city from info
    distribute by province;
    
    
    把一些小文件放到一个大文件中
    set mapred.reduce.tasks=1;-->下面的province将会输出到一个大文件中
    insert overwrite table province partition(dt='20150719')
    selsct time,country,province from city 
    distribute by country;
    
    注:province是一个分区表。


     

    cluster by

    把有相同值的数据聚集到一起,并排序。 效果等价于distribute by col sort by col cluster by col  <==> distribute by col sort by col

    union all

    多个表的数据合并成一个表,hive不支持union

    select col from(
    select a as col from t1
    union all
    select b as col from t2
    )tmp

    执行流程

    从表中读取数据,执行where条件。合并到同一个表中。

    union all必须满足如下要求 字段名字一样 字段类型一样 字段个数一样 子表不能有别名 如果需要从合并之后的表中查询数据,那么合并的表必须要有别名

    select * from (
    select * from m
    union all
    select * from n
    )temp;
    
    如果两张表的字段名不一样,要将一个表修改别名同另一个表的字段名一样。
    select * from (
    select col1,col2 from m
    union all
    select col1,col3 as col2 from n
    )temp;

  • 相关阅读:
    Idea 找不到tomcat server 服务器选项
    idea永久使用
    Jax
    我的2014
    Mysql锁机制
    mysql 查询效率提升
    Java 静态工厂方法
    java 面试题(转)
    Java Semaphore
    Java CyclicBarrier
  • 原文地址:https://www.cnblogs.com/huxinga/p/7688376.html
Copyright © 2011-2022 走看看