zoukankan      html  css  js  c++  java
  • 辗转相除法求两个整数的最大公约数

    2020新年年初,一场疫情让人们止住了匆忙的脚步。一次在家看初中的在线教育视频,数学课上老师讲到一种求两个正整数的最大公约数的算法:辗转相除法,当时老师讲的很好,非常易懂,有了理论基础于是想用代码的方式实现。以下证明过程与教学视频无关。

    一,辗转相除法

    「辗转相除法」又叫做「欧几里得算法」,是公元前 300 年左右的希腊数学家欧几里得在他的著作《几何原本》提出的.利用这个方法,可以较快地求出两个自然数的最大公因数,即 HCF 或叫做 gcd.所谓最大公因数,是指几个数的共有的因数之中最大的一个,例如 8 和 12 的最大公因数是 4,记作 gcd(8,12)=4.

    在介绍这个方法之前,先说明整除性的一些特点,注以下文的所有数都是正整数,以后不再重覆.

    我们可以这样给出整除以的定义:

    对於两个自然数 a 和 b,若存在正整数 q,使得 a=bq,则 b 能整除 a,记作 b | a,我们叫 b 是 a 的因数,而 a 是 b 的倍数.

    那麼如果 c | a,而且 c | b,则 c 是 a 和 b 的公因数.

    由此,我们可以得出以下一些推论:

    推论一:如果 a | b,若 k 是整数,则 a | kb.因为由 a | b 可知 ha=b,所以 (hk)a=kb,即 a | kb.

    推论二:如果 a | b 以及 a | c,则 a | (b±c).因为由 a | b 以及 a | c,可知 ha=b,ka=c,二式相加,得 (h+k)a=b+c,即 a | (b+c).同样把二式相减可得 a | (b-c).

    推论三:如果 a | b 以及 b | a,则 a=b.因为由 a | b 以及 b | a,可知 ha=b,a=kb,因此 a=k(ha),hk=1,由於 h 和 k 都是正整数,故 h=k=1,因此 a=b.

    辗转相除法是用来计算两个数的最大公因数,在数值很大时尤其有用而且应用在电脑程式上也十分简单.其理论如下:

    如果 q 和 r 是 m 除以 n 的商及余数,即 m=nq+r,则 gcd(m,n)=gcd(n,r).

    证明是这样的:

    设 a=gcd(m,n),b=gcd(n,r)

    则有 a | m 及 a | n,因此 a | (m-nq)(这是由推论一及推论二得出的),即 a | r 及 a | n,所以 a | b

    又 b | r 及 b | n,所以 b | (nq+r),即 b | m 及 b | n,所以b | a.因为 a | b 并且 b | a,所以 a=b,即 gcd(m,n)=gcd(n,r).

    例如计算 gcd(546,429),由於 546=1(429)+117,429=3(117)+78,117=1(78)+39,78=2(39),因此

    gcd(546,429)

    =gcd(429,117)

    =gcd(117,78)

    =gcd(78,39)

    =39
    最小公倍数就是2个数的积除以最大公约数

    框图如下

    二,Java算法实现

    有了以上的理论基础,算法实现不难,用一个递归就可以实现,代码如下

     1     public Integer GDC(Integer m, Integer n) {
     2         if (m < n)
     3             XOR(m, n);
     4 
     5         Integer r = m % n;
     6         if (r > 0) {
     7             return GDC(n, r);
     8         } else {
     9             return n;
    10         }
    11     }
    12 
    13     /**
    14      * 两个数对换
    15      */
    16     private void XOR(Integer m, Integer n) {
    17         m = m ^ n;
    18         n = m ^ n;
    19         m = m ^ n;
    20     }

    这段代码可以很好的实现求最大公约数。

    仔细看代码后,实际上这个算法不够简洁,还可以优化,核心算法优化为一句代码实现,如下:

    1     public Integer GDC(Integer m, Integer n) {
    2         return n == 0 ? m : GCC(n, m % n);
    3     }

    优化后的代码3行搞定,非常简洁。

  • 相关阅读:
    bzoj1861 书架
    vijos2055 移动金币
    POJ2096 Collecting Bugs
    vijos2054 SDOI2019 热闹的聚会与尴尬的聚会
    vijos2051 SDOI2019 快速查询
    bzoj2215 POI2011 Conspiracy
    数据结构和算法(Golang实现)(2)简单入门Golang-包、变量和函数
    数据结构和算法(Golang实现)(1)简单入门Golang-前言
    Jupyter交互式工具安装使用
    Jekyll自动检测代码更新
  • 原文地址:https://www.cnblogs.com/huyueping/p/12331862.html
Copyright © 2011-2022 走看看