题意:有n个球队,m场比赛。
每个球队都已经有些胜负场次了。
每个球队的收益为Ci * wini2 - Di * losei2。
求最小可能总收益。
解:
先看出一个模型:用一流量代表一个胜场,每场比赛向两支队伍连边。
然后我们发现这个费用是跟流量的平方有关的,How to do?
先观察一波:1 4 9 16 25
差分:1 3 5 7 9
然后我们就发现:如果把下面差分建成边的费用,限流为1,恰好就是收益了。
至此茅塞顿开。
首先假设所有的队伍都输了,然后每场选出一名胜者,C(2win + 1) - D(2lose - 1)为费用。
最小费用最大流即可。
1 #include <cstdio> 2 #include <algorithm> 3 #include <queue> 4 #include <cstring> 5 6 const int N = 6050, M = 1000010; 7 const int INF = 0x3f3f3f3f; 8 9 struct Edge { 10 int nex, v; 11 int c, len; 12 }edge[M << 1]; int top = 1; 13 14 int e[N], vis[N], pre[N]; 15 int d[N], flow[N]; 16 std::queue<int> Q; 17 int A[N], B[N], C[N], D[N], win[N], los[N], X[N], Y[N]; 18 19 inline void add(int x, int y, int z, int w) { 20 //printf("add : %d %d ", x, y); 21 top++; 22 edge[top].v = y; 23 edge[top].c = z; 24 edge[top].len = w; 25 edge[top].nex = e[x]; 26 e[x] = top; 27 28 top++; 29 edge[top].v = x; 30 edge[top].c = 0; 31 edge[top].len = -w; 32 edge[top].nex = e[y]; 33 e[y] = top; 34 return; 35 } 36 37 inline bool SPFA(int s, int t) { 38 memset(d, 0x3f, sizeof(d)); 39 d[s] = 0; 40 flow[s] = INF; 41 vis[s] = 1; 42 Q.push(s); 43 while(!Q.empty()) { 44 int x = Q.front(); 45 Q.pop(); 46 vis[x] = 0; 47 //printf("x = %d d = %d ", x, d[x]); 48 for(int i = e[x]; i; i = edge[i].nex) { 49 int y = edge[i].v; 50 if(edge[i].c && d[y] > d[x] + edge[i].len) { 51 d[y] = d[x] + edge[i].len; 52 pre[y] = i; 53 flow[y] = std::min(flow[x], edge[i].c); 54 if(!vis[y]) { 55 vis[y] = 1; 56 Q.push(y); 57 } 58 } 59 } 60 } 61 return d[t] < INF; 62 } 63 64 inline void update(int s, int t) { 65 int temp = flow[t]; 66 while(t != s) { 67 int i = pre[t]; 68 edge[i].c -= temp; 69 edge[i ^ 1].c += temp; 70 t = edge[i ^ 1].v; 71 } 72 return; 73 } 74 75 inline int solve(int s, int t, int &cost) { 76 int ans = 0; 77 cost = 0; 78 while(SPFA(s, t)) { 79 ans += flow[t]; 80 cost += flow[t] * d[t]; 81 update(s, t); 82 } 83 return ans; 84 } 85 86 int main() { 87 int n, m, s, t, sum = 0; 88 scanf("%d%d", &n, &m); 89 s = n + m + 1, t = m + n + 2; 90 for(int i = 1; i <= n; i++) { 91 scanf("%d%d%d%d", &win[i], &los[i], &C[i], &D[i]); 92 /*win[i] = A[i]; 93 los[i] = B[i];*/ 94 } 95 for(int i = 1; i <= m; i++) { 96 scanf("%d%d", &X[i], &Y[i]); 97 add(s, n + i, 1, 0); 98 add(n + i, X[i], 1, 0); 99 add(n + i, Y[i], 1, 0); 100 los[X[i]]++; 101 los[Y[i]]++; 102 } 103 for(int i = 1; i <= n; i++) { 104 sum += C[i] * win[i] * win[i]; 105 sum += D[i] * los[i] * los[i]; 106 } 107 for(int i = 1; i <= m; i++) { 108 int x = X[i], y = Y[i]; 109 add(x, t, 1, C[x] * (2 * win[x] + 1) - D[x] * (2 * los[x] - 1)); 110 add(y, t, 1, C[y] * (2 * win[y] + 1) - D[y] * (2 * los[y] - 1)); 111 win[x]++; 112 win[y]++; 113 los[x]--; 114 los[y]--; 115 } 116 117 int ans; 118 solve(s, t, ans); 119 printf("%d", ans + sum); 120 return 0; 121 }