zoukankan      html  css  js  c++  java
  • ??? cliquers

    解:先推一个式子,然后就是CRT了...

    那个阶乘怎么求呢?主要是分母可能有0,这时我们把分母的因子p全部提出来,上下次数相减判断即可。

    细节颇多......注意在快速幂开始的时候a %= MO是个好习惯。

      1 #include <cstdio>
      2 #include <algorithm>
      3 
      4 typedef long long LL;
      5 const int N = 100010;
      6 const LL MO = 1e9 - 401, mod[] = {0, 2, 13, 5281, 7283};
      7 
      8 int turn;
      9 LL ans[5], n, m, nn[10000][5];
     10 //LL inv[10000][5], invn[10000][5];
     11 
     12 inline LL qpow(LL a, LL b, LL c) {
     13     LL ans = 1;
     14     a %= c;
     15     while(b) {
     16         if(b & 1) ans = ans * a % c;
     17         a = a * a % c;
     18         b = b >> 1;
     19     }
     20     return ans;
     21 }
     22 
     23 inline LL Pow(LL a, LL b) {
     24     LL ans = 1;
     25     while(b) {
     26         if(b & 1) ans = ans * a;
     27         a = a * a;
     28         b = b >> 1;
     29     }
     30     return ans;
     31 }
     32 
     33 LL exgcd(LL a, LL &x, LL b, LL &y) {
     34     if(!b) {
     35         x = 1; y = 0;
     36         return a;
     37     }
     38     LL g = exgcd(b, x, a % b, y);
     39     std::swap(x, y);
     40     y -= x * (a / b);
     41     return g;
     42 }
     43 
     44 inline LL getnn(LL x) {
     45     if(!x) return 1;
     46     LL t = x / mod[turn];
     47     LL ans = qpow(nn[mod[turn] - 1][turn], t, mod[turn]);
     48     t = x % mod[turn];
     49     return ans * nn[t][turn] % mod[turn] * getnn(x / mod[turn]);
     50 }
     51 
     52 inline LL cal(LL k) {
     53 
     54     //printf("cal %lld 
    ", k);
     55     //bool f = (turn == 2 && k == 2) || (turn == 2 && k == 1);
     56 
     57     LL time = 0;
     58     for(LL i = n; i > 1; i /= mod[turn]) {
     59         time += i / mod[turn];
     60         //printf("1 time += %lld  = %lld 
    ", i / mod[turn], time);
     61     }
     62     for(LL i = k; i > 1; i /= mod[turn]) {
     63         time -= i / mod[turn];
     64         //printf("2 time -= %lld  = %lld 
    ", i / mod[turn], time);
     65     }
     66     for(LL i = n / k; i > 1; i /= mod[turn]) {
     67         time -= (i / mod[turn]) * k;
     68         //printf("3 time -= %lld  = %lld
    ", i / mod[turn], time);
     69     }
     70     if(time) {
     71         //printf(" -- -- return 0 
    ");
     72         //printf("mod = %lld ans = 0
    ", mod[turn]);
     73         return 0;
     74     }
     75 
     76     LL t1 = getnn(n), t2 = getnn(k), t3 = getnn(n / k);
     77     /*if(f) {
     78         printf("%lld %lld %lld 
    ", t1, t2, t3);
     79     }*/
     80     t3 = qpow(t3, k, mod[turn]);
     81     t2 = qpow(t2, mod[turn] - 2, mod[turn]);
     82     t3 = qpow(t3, mod[turn] - 2, mod[turn]);
     83 
     84     //printf("return %lld 
    ", t1 * t2 % mod[turn] * t3 % mod[turn]);
     85     //printf("mod = %lld k = %lld ans = %lld 
    ", mod[turn], k, t1 * t2 % mod[turn] * t3 % mod[turn]);
     86     return t1 * t2 % mod[turn] * t3 % mod[turn];
     87 }
     88 
     89 inline LL solve() { /// cal each prime
     90     LL ans = 0;
     91     for(LL i = 1; i * i <= n; i++) {
     92         if(n % i) continue;
     93         ans = (ans + cal(i)) % mod[turn];
     94         if(i * i < n) {
     95             ans = (ans + cal(n / i)) % mod[turn];
     96         }
     97     }
     98     return ans;
     99 }
    100 
    101 inline void work() {
    102     scanf("%lld%lld", &n, &m);
    103     //m %= MO;
    104 
    105     for(turn = 1; turn <= 4; turn++) {
    106         ans[turn] = solve();
    107         //printf("ans %d %lld = %lld 
    ", turn, mod[turn], ans[turn]);
    108     }
    109 
    110 
    111     /// excrt
    112     /*LL a = ans[1], p = mod[1];
    113     for(int i = 2; i <= 4; i++) {
    114         /// merge
    115         //printf("merge %d 
    ", i);
    116         LL P = p * mod[i], x, y;
    117         LL c1 = ((a - ans[i]) % P + P) % P;
    118         //printf("a = %lld  c1 = %lld 
    ", a, c1);
    119         LL g = exgcd(mod[i], x, p, y);
    120         (x *= (c1 / g)) %= P; (y *= (c1 / g)) %= P;
    121         a = (x * mod[i] % P + ans[i]) % P;
    122         p = P;
    123         //printf("merge %lld ans = %lld 
    ", mod[i], a);
    124     }*/
    125     /// crt
    126     LL a = 0, p = MO - 1;
    127     for(int i = 1; i <= 4; i++) {
    128         a = (a + ans[i] * (p / mod[i]) % p * qpow(p / mod[i], mod[i] - 2, mod[i]) % p) % p;
    129     }
    130 
    131     //printf("over 
    ");
    132     a = (a % p + p) % p;
    133     //printf("a = %lld
    ", a);
    134     LL ans = qpow(m, a, MO);
    135     printf("%lld
    ", ans);
    136     return;
    137 }
    138 
    139 inline void prework() {
    140     for(turn = 1; turn <= 4; turn++) {
    141         //invn[0][turn] = inv[0][turn]turn] = nn[0][turn] = 1;
    142         nn[0][turn] = 1;
    143         //invn[1][turn] = inv[1][turn]turn] = nn[1][turn] = 1;
    144         for(int i = 1; i < mod[turn]; i++) {
    145             nn[i][turn] = nn[i - 1][turn] * i % mod[turn];
    146             //inv[i][turn] = inv[mod[turn] % i] * (mod[turn] - mod[turn] / i) % mod[turn];
    147             //invn[i][turn] = invn[i - 1][turn] * inv[i][turn] % mod[turn];
    148         }
    149     }
    150     return;
    151 }
    152 
    153 int main() {
    154 
    155     freopen("cliquers.in", "r", stdin);
    156     freopen("cliquers.out", "w", stdout);
    157 
    158     prework();
    159 
    160     int T;
    161     scanf("%d", &T);
    162     while(T--) {
    163         work();
    164     }
    165     return 0;
    166 }
    AC代码

    两种CRT都写了。

  • 相关阅读:
    史上最强验证
    Yii2 return redirect()
    一次线上问题引发的思考
    一次前端体验优化
    RSA For PHP
    判断是否字符串是否是JSON
    过滤Xss
    Yii2 中日志的记录
    Yii2 中禁用csrf校验
    开始。
  • 原文地址:https://www.cnblogs.com/huyufeifei/p/10466963.html
Copyright © 2011-2022 走看看