zoukankan      html  css  js  c++  java
  • 微信跳一跳实验报告

    一、准备工具

    ·adb驱动

    ·安卓手机

    ·打开手机调试模式

    ·USB线接好手机和电脑

    ·依赖安装包

    二、实现原理

    ·获取手机实时的截图

    ·点击起始位置和落地位置

    ·计算两个点的距离

    ·计算按压时间

    ·发送按压指令

    ·重新刷新手机截图

    三、abd驱动安装

    配置成功如图所示:

     四、安装微信跳一跳辅助所需的所有python模块

    所需的模块有:

    backports.functools-lru-cache==1.4

    cycler==0.10.0

    matplotlib==2.1.1

    numpy==1.13.3

    olefile==0.44

    opencv-python==3.4.0.12

    Pillow==4.3.0

    pyparsing==2.2.0

    python-dateutil==2.6.1

    pytz==2017.3

    six==1.11.0

    tensorflow==1.4.0

    pandas==0.22.0

    scipy==1.0.0

    scikit_learn==0.19.1

    五、手机与电脑连接

    将安卓手机用USB与电脑相连接,在安卓手机上打开开发者模式,并开启USB调试模式(如何开启开发者模式:在设置中找到手机版本号,连续点击5次即可开启开发者模式)

    如果以上操作没有任何错误,那么在CMD控制台,执行命令 adb devices可显示当前手机连接的端口号。

     六、运行跳一跳

    # -*- coding: utf-8 -*-
    
    """
    === 思路 ===
    核心:每次落稳之后截图,根据截图算出棋子的坐标和下一个块顶面的中点坐标,
        根据两个点的距离乘以一个时间系数获得长按的时间
    识别棋子:靠棋子的颜色来识别位置,通过截图发现最下面一行大概是一条
        直线,就从上往下一行一行遍历,比较颜色(颜色用了一个区间来比较)
        找到最下面的那一行的所有点,然后求个中点,求好之后再让 Y 轴坐标
        减小棋子底盘的一半高度从而得到中心点的坐标
    识别棋盘:靠底色和方块的色差来做,从分数之下的位置开始,一行一行扫描,
        由于圆形的块最顶上是一条线,方形的上面大概是一个点,所以就
        用类似识别棋子的做法多识别了几个点求中点,这时候得到了块中点的 X
        轴坐标,这时候假设现在棋子在当前块的中心,根据一个通过截图获取的
        固定的角度来推出中点的 Y 坐标
    最后:根据两点的坐标算距离乘以系数来获取长按时间(似乎可以直接用 X 轴距离)
    """
    
    import math
    import re
    import random
    import sys
    import time
    from PIL import Image
    from six.moves import input
    
    if sys.version_info.major != 3:
        print('请使用Python3')
        exit(1)
    try:
        from common import debug, config, screenshot, UnicodeStreamFilter
        from common.auto_adb import auto_adb
    except Exception as ex:
        print(ex)
        print('请将脚本放在项目根目录中运行')
        print('请检查项目根目录中的 common 文件夹是否存在')
        exit(1)
    adb = auto_adb()
    VERSION = "1.1.4"
    
    # DEBUG 开关,需要调试的时候请改为 True,不需要调试的时候为 False
    DEBUG_SWITCH = False
    adb.test_device()
    # Magic Number,不设置可能无法正常执行,请根据具体截图从上到下按需
    # 设置,设置保存在 config 文件夹中
    config = config.open_accordant_config()
    under_game_score_y = config['under_game_score_y']
    # 长按的时间系数,请自己根据实际情况调节
    press_coefficient = config['press_coefficient']
    # 二分之一的棋子底座高度,可能要调节
    piece_base_height_1_2 = config['piece_base_height_1_2']
    # 棋子的宽度,比截图中量到的稍微大一点比较安全,可能要调节
    piece_body_width = config['piece_body_width']
    # 图形中圆球的直径,可以利用系统自带画图工具,用直线测量像素,如果可以实现自动识别圆球直径,那么此处将可实现全自动。
    head_diameter = config.get('head_diameter')
    if head_diameter == None:
        density_str = adb.test_density()
        matches = re.search(r'd+', density_str)
        density_val = int(matches.group(0))
        head_diameter = density_val / 8
    
    
    def set_button_position(im):
        """
        将 swipe 设置为 `再来一局` 按钮的位置
        """
        global swipe_x1, swipe_y1, swipe_x2, swipe_y2
        w, h = im.size
        left = int(w / 2)
        top = int(1584 * (h / 1920.0))
        left = int(random.uniform(left - 200, left + 200))
        top = int(random.uniform(top - 200, top + 200))  # 随机防 ban
        after_top = int(random.uniform(top - 200, top + 200))
        after_left = int(random.uniform(left - 200, left + 200))
        swipe_x1, swipe_y1, swipe_x2, swipe_y2 = left, top, after_left, after_top
    
    
    def jump(distance, delta_piece_y):
        """
        跳跃一定的距离
        """
        # 计算程序长度与截图测得的距离的比例
        scale = 0.945 * 2 / head_diameter
        actual_distance = distance * scale * (math.sqrt(6) / 2)
        press_time = (-945 + math.sqrt(945 ** 2 + 4 * 105 *
                                       36 * actual_distance)) / (2 * 105) * 1000
        press_time *= press_coefficient
        press_time = max(press_time, 200)  # 设置 200ms 是最小的按压时间
        press_time = int(press_time)
    
        cmd = 'shell input swipe {x1} {y1} {x2} {y2} {duration}'.format(
            x1=swipe_x1,
            y1=swipe_y1,
            x2=swipe_x2,
            y2=swipe_y2,
            duration=press_time + delta_piece_y
        )
        print(cmd)
        adb.run(cmd)
        return press_time
    
    
    def find_piece_and_board(im):
        """
        寻找关键坐标
        """
        w, h = im.size
        points = []  # 所有满足色素的点集合
        piece_y_max = 0
        board_x = 0
        board_y = 0
        scan_x_border = int(w / 8)  # 扫描棋子时的左右边界
        scan_start_y = 0  # 扫描的起始 y 坐标
        im_pixel = im.load()
        # 以 50px 步长,尝试探测 scan_start_y
        for i in range(int(h / 3), int(h * 2 / 3), 50):
            last_pixel = im_pixel[0, i]
            for j in range(1, w):
                pixel = im_pixel[j, i]
                # 不是纯色的线,则记录 scan_start_y 的值,准备跳出循环
                if pixel != last_pixel:
                    scan_start_y = i - 50
                    break
            if scan_start_y:
                break
        print('start scan Y axis: {}'.format(scan_start_y))
    
        # 从 scan_start_y 开始往下扫描,棋子应位于屏幕上半部分,这里暂定不超过 2/3
        for i in range(scan_start_y, int(h * 2 / 3)):
            # 横坐标方面也减少了一部分扫描开销
            for j in range(scan_x_border, w - scan_x_border):
                pixel = im_pixel[j, i]
                # 根据棋子的最低行的颜色判断,找最后一行那些点的平均值,这个颜
                # 色这样应该 OK,暂时不提出来
                if (50 < pixel[0] < 60) 
                        and (53 < pixel[1] < 63) 
                        and (95 < pixel[2] < 110):
                    points.append((j, i))
                    piece_y_max = max(i, piece_y_max)
    
        bottom_x = [x for x, y in points if y == piece_y_max]  # 所有最底层的点的横坐标
        if not bottom_x:
            return 0, 0, 0, 0, 0
    
        piece_x = int(sum(bottom_x) / len(bottom_x))  # 中间值
        piece_y = piece_y_max - piece_base_height_1_2  # 上移棋子底盘高度的一半
    
        # 限制棋盘扫描的横坐标,避免音符 bug
        if piece_x < w / 2:
            board_x_start = piece_x
            board_x_end = w
        else:
            board_x_start = 0
            board_x_end = piece_x
    
        for i in range(int(h / 3), int(h * 2 / 3)):
            last_pixel = im_pixel[0, i]
            if board_x or board_y:
                break
            board_x_sum = 0
            board_x_c = 0
    
            for j in range(int(board_x_start), int(board_x_end)):
                pixel = im_pixel[j, i]
                # 修掉脑袋比下一个小格子还高的情况的 bug
                if abs(j - piece_x) < piece_body_
                    continue
    
                # 检查Y轴下面5个像素, 和背景色相同, 那么是干扰
                ver_pixel = im_pixel[j, i + 5]
                if abs(pixel[0] - last_pixel[0]) 
                        + abs(pixel[1] - last_pixel[1]) 
                        + abs(pixel[2] - last_pixel[2]) > 10 
                        and abs(ver_pixel[0] - last_pixel[0]) 
                        + abs(ver_pixel[1] - last_pixel[1]) 
                        + abs(ver_pixel[2] - last_pixel[2]) > 10:
                    board_x_sum += j
                    board_x_c += 1
            if board_x_sum:
                board_x = board_x_sum / board_x_c
        last_pixel = im_pixel[board_x, i]
    
        # 首先找到游戏的对称中心,由对称中心做辅助线与x=board_x直线的交点即为棋盘的中心位置
        # 有了对称中心,可以知道棋子在棋盘上面的相对位置(偏高或偏低,偏高的话测量值比实际值大,
        # 偏低相反。最后通过delta_piece_y来对跳跃时间进行微调
        center_x = w / 2 + (24 / 1080) * w
        center_y = h / 2 + (17 / 1920) * h
        if piece_x > center_x:
            board_y = round((25.5 / 43.5) * (board_x - center_x) + center_y)
            delta_piece_y = piece_y - round((25.5 / 43.5) * (piece_x - center_x) + center_y)
        else:
            board_y = round(-(25.5 / 43.5) * (board_x - center_x) + center_y)
            delta_piece_y = piece_y - round(-(25.5 / 43.5) * (piece_x - center_x) + center_y)
    
        if not all((board_x, board_y)):
            return 0, 0, 0, 0, 0
        return piece_x, piece_y, board_x, board_y, delta_piece_y
    
    
    def yes_or_no():
        """
        检查是否已经为启动程序做好了准备
        """
        while True:
            yes_or_no = str(input('请确保手机打开了 ADB 并连接了电脑,'
                                  '然后打开跳一跳并【开始游戏】后再用本程序,确定开始?[y/n]:'))
            if yes_or_no == 'y':
                break
            elif yes_or_no == 'n':
                print('谢谢使用', end='')
                exit(0)
            else:
                print('请重新输入')
    
    
    def main():
        """
        主函数
        """
        print('程序版本号:{}'.format(VERSION))
        print('激活窗口并按 CONTROL + C 组合键退出')
        debug.dump_device_info()
        screenshot.check_screenshot()
    
        i, next_rest, next_rest_time = (0, random.randrange(3, 10),
                                        random.randrange(5, 10))
        while True:
            im = screenshot.pull_screenshot()
            # 获取棋子和 board 的位置
            piece_x, piece_y, board_x, board_y, delta_piece_y = find_piece_and_board(im)
            ts = int(time.time())
            print(ts, piece_x, piece_y, board_x, board_y)
            set_button_position(im)
            jump(math.sqrt((board_x - piece_x) ** 2 + (board_y - piece_y) ** 2), delta_piece_y)
            if DEBUG_SWITCH:
                debug.save_debug_screenshot(ts, im, piece_x,
                                            piece_y, board_x, board_y)
                debug.backup_screenshot(ts)
            im.close()
            i += 1
            if i == next_rest:
                print('已经连续打了 {} 下,休息 {}秒'.format(i, next_rest_time))
                for j in range(next_rest_time):
                    sys.stdout.write('
    程序将在 {}秒 后继续'.format(next_rest_time - j))
                    sys.stdout.flush()
                    time.sleep(1)
                print('
    继续')
                i, next_rest, next_rest_time = (0, random.randrange(30, 100),
                                                random.randrange(10, 60))
            # 为了保证截图的时候应落稳了,多延迟一会儿,随机值防 ban
            time.sleep(random.uniform(1.2, 1.4))
    
    
    if __name__ == '__main__':
        try:
            yes_or_no()
            main()
        except KeyboardInterrupt:
            adb.run('kill-server')
            print('
    谢谢使用', end='')
            exit(0)

     

     七、根据截图得出实际数据调节参数

    # -*- coding: utf-8 -*-
    from __future__ import print_function, division
    import os
    import time
    import datetime
    import matplotlib.pyplot as plt
    import matplotlib.animation as animation
    import cv2
    
    VERSION = "1.1.4"
    scale = 0.25
    
    template = cv2.imread('./resource/image/character.png')
    template = cv2.resize(template, (0, 0), fx=scale, fy=scale)
    template_size = template.shape[:2]
    
    
    def search(img):
        result = cv2.matchTemplate(img, template, cv2.TM_SQDIFF)
        min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)
    
        cv2.rectangle(
            img,
            (min_loc[0], min_loc[1]),
            (min_loc[0] + template_size[1], min_loc[1] + template_size[0]),
            (255, 0, 0),
            4)
        return img, min_loc[0] + template_size[1] / 2, min_loc[1] +  template_size[0]
    
    
    def pull_screenshot():
        filename = datetime.datetime.now().strftime("%H%M%S") + '.png'
        os.system('mv autojump.png {}'.format(filename))
        os.system('adb shell screencap -p /sdcard/autojump.png')
        os.system('adb pull /sdcard/autojump.png ./autojump.png')
    
    
    def jump(distance):
        press_time = distance * 1.35
        press_time = int(press_time)
        cmd = 'adb shell input swipe 320 410 320 410 ' + str(press_time)
        print(cmd)
        os.system(cmd)
    
    
    def update_data():
        global src_x, src_y
    
        img = cv2.imread('./autojump.png')
        img = cv2.resize(img, (0, 0), fx=scale, fy=scale)
        img, src_x, src_y = search(img)
        return img
    
    
    fig = plt.figure()
    pull_screenshot()
    img = update_data()
    im = plt.imshow(img, animated=True)
    
    update = True
    
    
    def updatefig(*args):
        global update
    
        if update:
            time.sleep(1)
            pull_screenshot()
            im.set_array(update_data())
            update = False
        return im,
    
    
    def on_click(event):
        global update    
        global src_x, src_y
        
        dst_x, dst_y = event.xdata, event.ydata
    
        distance = (dst_x - src_x)**2 + (dst_y - src_y)**2 
        distance = (distance ** 0.5) / scale
        print('distance = ', distance)
        jump(distance)
        update = True
    
    
    fig.canvas.mpl_connect('button_press_event', on_click)
    ani = animation.FuncAnimation(fig, updatefig, interval=5, blit=True)
    plt.show()

       

      

     调整后的参数为:

  • 相关阅读:
    Java零基础学习(四)JSP与Servlet
    Java零基础学习(三)封装继承多态
    vsftpd+nginx搭建图片服务器的一些问题
    1003. 我要通过!(20)(两种语言的运行时间差异)
    acm 1108 java做法
    acm 2020 用java实现
    acm 2519 java做法
    acm 2040 java做法
    acm 2003 java做法
    acm 2041 java的做法
  • 原文地址:https://www.cnblogs.com/hx494682/p/12983420.html
Copyright © 2011-2022 走看看