Problem Description
A wqb-number, or B-number for short, is a non-negative integer whose decimal form contains the sub- string “13” and can be divided by 13. For example, 130 and 2613 are wqb-numbers, but 143 and 2639 are not. Your task is to calculate how many wqb-numbers from 1 to n for a given integer n.
Input
Process till EOF. In each line, there is one positive integer n(1 <= n <= 1000000000).
Output
Print each answer in a single line.
Sample Input
13
100
200
1000
Sample Output
1
1
2
2
参考了Qiuqiqiu特别是递推中使用的加法来mod(开始我使用的是减法,很难看)下面是我的总结;
思路:
1. 和3555Bomb一样,要含有13,可知第二维要表示是否含13,首位是否为3以及已经含13三种,还有一个就是整除问题;拓展一维来表示余数,其余的一样操作;当最高位为0时,表示所有小于n位数的数符合的情况,所以在高位相同,且高位中已经含有 ‘13’时直接加不含 ‘13’的个数即可;
2. **当第i位为1时,由求的是小于n的所有符合数可知在模拟第i位时只会模拟到0,那么加的只是f[i-1][2][]的所有符合的情况;那这个1一定要浪费吗?当你是取i-1位从0~9时,答案是的。但是当只要存在13时(整除在三维中模拟),还要看后一位是否大于3….(特别的地方);

#include<bits/stdc++.h> using namespace std; #define rep(i,n) for(int (i) = 0;i < (n);i++) int f[15][3][13]; int bit[12]; void init() { memset(f,0,sizeof(f)); bit[1] = 1; for(int i = 2;i < 11;i++) bit[i] = bit[i-1]*10%13; f[0][0][0] = 1; for(int i = 0;i <= 10;i++) for(int k = 0;k < 13;k++){//直接按照需要的数来递推 for(int j = 0;j <= 9;j++) f[i+1][0][(k+j*bit[i+1])%13] += f[i][0][k]; f[i+1][0][(k+bit[i+1])%13] -= f[i][1][k]; f[i+1][1][(k+bit[i+1]*3)%13] += f[i][0][k];//指定来加~~; f[i+1][2][(k+bit[i+1])%13] += f[i][1][k]; for(int j = 0;j <= 9;j++) f[i+1][2][(k+bit[i+1]*j)%13] += f[i][2][k]; } } int query(int n) { int d[15]={},tot = 0; while(n){ d[++tot] = n % 10; n /= 10; } int ans = 0,mod = 0,flag = 0; for(int i = tot;i > 0;mod = (mod + d[i]*bit[i])%13,i--){ for(int j = 0;j < d[i];j++) ans += f[i-1][2][(13 - (mod + j*bit[i])%13)%13]; if(flag){ for(int k = 0;k < d[i];k++){ ans += f[i-1][0][(13 - (mod + k * bit[i])%13)%13]; } continue; } if(d[i] > 1) ans += f[i-1][1][(13 - (mod + bit[i])%13)%13]; if(d[i+1] == 1 && d[i] > 3) ans += f[i][1][(13-mod)%13]; if(d[i+1] == 1 && d[i] == 3) flag = 1; } return ans; } int main() { init(); int n; while(scanf("%d",&n) == 1){ printf("%d ",query(n+1)); } }