题意:给你一个非负整数数组,定义某个区间的参考值为:区间所有元素的和*区间最小元素。求该数组中的最大参考值以及对应的区间。
比如说有6个数3 1 6 4 5 2
最大参考值为6,4,5组成的区间,区间最小值为4,参考值为4*(6+5+4)=60
数据范围1<=n<=100000;
单调栈做法:对于一个区间,我们需要知道区间的最小值,并且是在出栈的时候更新最优解;这时就可以想到当我们维护的是一个单调递增的栈时,栈顶元素由于当前入栈的元素逼栈顶元素小而要出栈时,这个栈顶元素所代表的区间的l,r分别是什么?很明显,为栈顶元素出栈后,当前元素未入栈之间的空区域**,并且未出栈的栈顶元素值就是该区间的最小值;
注意:为了使得最后栈中没有元素,要在最后加上一个最小的元素-1;并且由于ans 可能等于0,所以初始化为-1,否则当数据为 1 0时,由于ansl,ansr没有初始化,并且在更新ans时使用的是tmp > ans,导致区间边界为一随机值,而导致WA.另外注意sum会爆int即可;
#include<iostream> #include<cstdio> #include<cstring> #include<string.h> #include<algorithm> #include<vector> #include<cmath> #include<stdlib.h> #include<time.h> #include<stack> #include<set> #include<map> #include<queue> using namespace std; #define rep0(i,l,r) for(int i = (l);i < (r);i++) #define rep1(i,l,r) for(int i = (l);i <= (r);i++) #define rep_0(i,r,l) for(int i = (r);i > (l);i--) #define rep_1(i,r,l) for(int i = (r);i >= (l);i--) #define MS0(a) memset(a,0,sizeof(a)) #define MS1(a) memset(a,-1,sizeof(a)) #define MSi(a) memset(a,0x3f,sizeof(a)) #define inf 0x3f3f3f3f #define lson l, m, rt << 1 #define rson m+1, r, rt << 1|1 typedef pair<int,int> PII; #define A first #define B second #define MK make_pair typedef __int64 ll; template<typename T> void read1(T &m) { T x=0,f=1;char ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();} while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();} m = x*f; } template<typename T> void read2(T &a,T &b){read1(a);read1(b);} template<typename T> void read3(T &a,T &b,T &c){read1(a);read1(b);read1(c);} template<typename T> void out(T a) { if(a>9) out(a/10); putchar(a%10+'0'); } const int N = 100100; int a[N],stk[N];// stk[]存储的是标号 不是直接的值 ll sum[N],ans = -1; int main() { int p = 0,ansl,ansr,n; read1(n); rep1(i,1,n){ read1(a[i]); sum[i] += sum[i-1] + a[i]; } a[++n] = -1;stk[0] = 0;// 维护一个单调递增的栈 rep1(i,1,n){ while(p && a[i] < a[stk[p]]){ int l = stk[p-1];// [l+1,i-1]最小值为a[stk[p]] ll tmp = 1LL*a[stk[p]]*(sum[i-1] - sum[l]); if(tmp > ans) ans = tmp,ansl = l+1,ansr = i-1; p--; } stk[++p] = i; } printf("%I64d %d %d ",ans,ansl,ansr); return 0; }