链接:http://acm.hdu.edu.cn/showproblem.php?pid=5726
题意:有N(N <= 100,000),之后有Q(Q <= 100,000)个区间查询[l,r]。问ans1 = gcd(al,al+1,...ar) = ?,并且有多少组[l',r'] 的gcd值等于ans1?
思路:
对于求解ans1,由于gcd(a,b,c) = gcd( gcd(a,b),c) 所以可以使用ST表的思想,倍增DP求解区间的gcd值,时间复杂度为O(nlog(n)),之后RMQ查找区间[l,r]的gcd值时,也是和ST表类似;
如果求解个数?
注意到从某个点起的区间的gcd值的变化为非增的;并且每次变化减少的质因子值至少为2,所以个数不超过log(1e9)个;
这时对于从每一个点起使用二分右端点,递推左端点即可在log(n)时间内预处理出[l,n]的所有gcd值,累加到map中,之后O(1)即可;
好题:单调性是一个很好的性质。。
#pragma comment(linker, "/STACK:1024000000,1024000000") #include<bits/stdc++.h> using namespace std; #define rep0(i,l,r) for(int i = (l);i < (r);i++) #define rep1(i,l,r) for(int i = (l);i <= (r);i++) #define rep_0(i,r,l) for(int i = (r);i > (l);i--) #define rep_1(i,r,l) for(int i = (r);i >= (l);i--) #define MS0(a) memset(a,0,sizeof(a)) #define MS1(a) memset(a,-1,sizeof(a)) #define MSi(a) memset(a,0x3f,sizeof(a)) #define inf 0x3f3f3f3f #define A first #define B second #define MK make_pair #define esp 1e-8 #define zero(x) (((x)>0?(x):-(x))<eps) #define bitnum(a) __builtin_popcount(a) #define clear0 (0xFFFFFFFE) #define mod 1000000007 typedef pair<int,int> PII; typedef long long ll; typedef unsigned long long ull; template<typename T> void read1(T &m) { T x = 0,f = 1;char ch = getchar(); while(ch <'0' || ch >'9'){ if(ch == '-') f = -1;ch=getchar(); } while(ch >= '0' && ch <= '9'){ x = x*10 + ch - '0';ch = getchar(); } m = x*f; } template<typename T> void read2(T &a,T &b){read1(a);read1(b);} template<typename T> void read3(T &a,T &b,T &c){read1(a);read1(b);read1(c);} template<typename T> void out(T a) { if(a>9) out(a/10); putchar(a%10+'0'); } inline ll gcd(ll a,ll b){ return b == 0? a: gcd(b,a%b); } const int maxn = 1e5 + 10; int a[maxn],g[maxn][18]; void ST(int n) { rep1(i,1,n) g[i][0] = a[i]; for(int i = 1; i <= 17; i++){ for(int p = 1; p + (1<<i) <= n+1; p++){ g[p][i] = gcd(g[p][i-1],g[p+(1<<i-1)][i-1]); } } } int RMQ(int l,int r) { int len = log(1.*(r-l+1))/log(2); return gcd(g[l][len],g[r-(1<<len)+1][len]); } map<int, ll> mp; ll solve(int n) { mp.clear(); rep1(i,1,n){ for(int j = i;j <= n;j++){ int _gcd = RMQ(i,j), l = j, r = n, tmp = j; while(l <= r){ int mid = l + r >> 1; if(RMQ(j,mid) == _gcd) l = mid+1,tmp = mid; else r = mid - 1; } mp[_gcd] += tmp - j + 1; j = tmp; } } } int main() { //freopen("data.txt","r",stdin); //freopen("out.txt","w",stdout); int T, kase = 1; scanf("%d",&T); while(T--){ printf("Case #%d: ", kase++); int n, m; read1(n); rep1(i,1,n) read1(a[i]); ST(n); solve(n); read1(m); while(m--){ int l, r, aux; read2(l,r); aux = RMQ(l,r); printf("%d %I64d ",aux,mp[aux]); } } return 0; }