zoukankan      html  css  js  c++  java
  • 2016 Multi-University Training Contest 1 GCD RMQ+二分(预处理)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=5726

    题意:有N(N <= 100,000),之后有Q(Q <= 100,000)个区间查询[l,r]。问ans1 = gcd(al,al+1,...ar) = ?,并且有多少组[l',r'] 的gcd值等于ans1?

    思路:

    对于求解ans1,由于gcd(a,b,c) = gcd( gcd(a,b),c) 所以可以使用ST表的思想,倍增DP求解区间的gcd值,时间复杂度为O(nlog(n)),之后RMQ查找区间[l,r]的gcd值时,也是和ST表类似;

    如果求解个数?

    注意到从某个点起的区间的gcd值的变化为非增的;并且每次变化减少的质因子值至少为2,所以个数不超过log(1e9)个

    这时对于从每一个点起使用二分右端点,递推左端点即可在log(n)时间内预处理出[l,n]的所有gcd值,累加到map中,之后O(1)即可;

    好题:单调性是一个很好的性质。。

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<bits/stdc++.h>
    using namespace std;
    #define rep0(i,l,r) for(int i = (l);i < (r);i++)
    #define rep1(i,l,r) for(int i = (l);i <= (r);i++)
    #define rep_0(i,r,l) for(int i = (r);i > (l);i--)
    #define rep_1(i,r,l) for(int i = (r);i >= (l);i--)
    #define MS0(a) memset(a,0,sizeof(a))
    #define MS1(a) memset(a,-1,sizeof(a))
    #define MSi(a) memset(a,0x3f,sizeof(a))
    #define inf 0x3f3f3f3f
    #define A first
    #define B second
    #define MK make_pair
    #define esp 1e-8
    #define zero(x) (((x)>0?(x):-(x))<eps)
    #define bitnum(a) __builtin_popcount(a)
    #define clear0 (0xFFFFFFFE)
    #define mod 1000000007
    typedef pair<int,int> PII;
    typedef long long ll;
    typedef unsigned long long ull;
    template<typename T>
    void read1(T &m)
    {
        T x = 0,f = 1;char ch = getchar();
        while(ch <'0' || ch >'9'){ if(ch == '-') f = -1;ch=getchar(); }
        while(ch >= '0' && ch <= '9'){ x = x*10 + ch - '0';ch = getchar(); }
        m = x*f;
    }
    template<typename T>
    void read2(T &a,T &b){read1(a);read1(b);}
    template<typename T>
    void read3(T &a,T &b,T &c){read1(a);read1(b);read1(c);}
    template<typename T>
    void out(T a)
    {
        if(a>9) out(a/10);
        putchar(a%10+'0');
    }
    inline ll gcd(ll a,ll b){ return b == 0? a: gcd(b,a%b); }
    const int maxn = 1e5 + 10;
    int a[maxn],g[maxn][18];
    void ST(int n)
    {
        rep1(i,1,n) g[i][0] = a[i];
        for(int i = 1; i <= 17; i++){
            for(int p = 1; p + (1<<i) <= n+1; p++){
                g[p][i] = gcd(g[p][i-1],g[p+(1<<i-1)][i-1]);           
            }       
        }
    }
    int RMQ(int l,int r)
    {
        int len = log(1.*(r-l+1))/log(2);
        return gcd(g[l][len],g[r-(1<<len)+1][len]);
    }
    map<int, ll> mp;
    ll solve(int n)
    {
        mp.clear();
        rep1(i,1,n){
            for(int j = i;j <= n;j++){
                int _gcd = RMQ(i,j), l = j, r = n, tmp = j;
                while(l <= r){
                    int mid = l + r >> 1;
                    if(RMQ(j,mid) == _gcd) l = mid+1,tmp = mid;
                    else r = mid - 1;
                }           
                mp[_gcd] += tmp - j + 1;
                j = tmp;
            }        
        }
    }
    int main()
    {
        //freopen("data.txt","r",stdin);
        //freopen("out.txt","w",stdout);
        int T, kase = 1;
        scanf("%d",&T);
        while(T--){
            printf("Case #%d:
    ", kase++);
            int n, m;
            read1(n);
            rep1(i,1,n) read1(a[i]);
            ST(n);
            solve(n);
            read1(m);
            while(m--){
                int l, r, aux;
                read2(l,r);
                aux = RMQ(l,r);
                printf("%d %I64d
    ",aux,mp[aux]);
            }
        }
        return 0;
    }
    
  • 相关阅读:
    c#中的as,is和强转
    Shader中的lerp
    [RequireComponent(typeof(....))]
    [ExecuteInEditMode]
    在ugui上显示3d物体
    T4语法快速入门
    MVC生命周期
    MVC5路由系统机制详细讲解
    FluentScheduler定时器计划任务
    MVC的WebViewPage
  • 原文地址:https://www.cnblogs.com/hxer/p/5701721.html
Copyright © 2011-2022 走看看