题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5719
题意:一个数列为1~N的排列,给定mn[1...n]和mx[1...n],问有符合的排列数为多少?如果不存在,输出0;
思路:
有解的几种条件:
1. mn , mx 变化单调;
2. mn,mx 不能同时变化;
3. 一个位置可选的个数>0;
当解存在时,递推出每次可选择的个数,num += mx[i] - mx[i-1] + mn[i-1] - mn[i] - 1; 即可;
坑:开始想成了求解连续可选区间长度,和连续可选区间的 可选数;然后使用组合数和全排列...并且貌似还是错的;还是及时计数比较好;
及时计数的特点: 在线求出对结果的贡献,并且可以不管其他的状态对当前处理的状态(点)的影响;
#pragma comment(linker, "/STACK:1024000000,1024000000") #include<bits/stdc++.h> using namespace std; #define rep0(i,l,r) for(int i = (l);i < (r);i++) #define rep1(i,l,r) for(int i = (l);i <= (r);i++) #define rep_0(i,r,l) for(int i = (r);i > (l);i--) #define rep_1(i,r,l) for(int i = (r);i >= (l);i--) #define MS0(a) memset(a,0,sizeof(a)) #define MS1(a) memset(a,-1,sizeof(a)) #define MSi(a) memset(a,0x3f,sizeof(a)) #define inf 0x3f3f3f3f #define lson l, m, rt << 1 #define rson m+1, r, rt << 1|1 #define A first #define B second #define MK make_pair #define esp 1e-8 #define zero(x) (((x)>0?(x):-(x))<eps) #define bitnum(a) __builtin_popcount(a) #define clear0 (0xFFFFFFFE) typedef pair<int,int> PII; const int mod = 998244353; typedef long long ll; typedef unsigned long long ull; template<typename T> void read1(T &m) { T x=0,f=1;char ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();} while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();} m = x*f; } template<typename T> void read2(T &a,T &b){read1(a);read1(b);} template<typename T> void read3(T &a,T &b,T &c){read1(a);read1(b);read1(c);} template<typename T> void out(T a) { if(a>9) out(a/10); putchar(a%10+'0'); } inline ll gcd(ll a,ll b){ return b == 0? a: gcd(b,a%b); } const int maxn = 100007; int a[maxn], b[maxn]; int main() { //freopen("data.txt","r",stdin); //freopen("out.txt","w",stdout); int T, kase = 1; scanf("%d",&T); while(T--){ int n, m, flag = 1; read1(n); rep1(i,1,n) read1(a[i]); rep1(i,1,n) read1(b[i]); if(a[1] != b[1]) flag = 0; ll ans = 1,num = 0; for(int i = 2;i <= n && flag; i++){ if(a[i] > a[i-1] || b[i] < b[i-1]) flag = 0; if(a[i] != a[i-1] && b[i] != b[i-1]) flag = 0; if(num < 0) flag = 0; if(a[i] == a[i-1] && b[i] == b[i-1]) ans = (ans * num)% mod; num += b[i] - b[i-1] + a[i-1] - a[i] - 1; } if(!flag) puts("0"); else printf("%lld ", ans); } return 0; }