zoukankan      html  css  js  c++  java
  • poj 1201 Intervals 差分约束系统

    题目链接: http://poj.org/problem?id=1201

    题意:给定n(1<= n <= 50000)个 闭区间,每个区间后面带一个值 Ci, 问集合Z个数的最小值使得在每个区间中的数的个数 “不少于Ci”?

    思路: S[i] 表示 小于等于i 的个数,这样可以直接按照输入建立不等式之后转化为有向网即可;

    需要注意的是 在原始的两个不等式 S[i-1] - s[i] <= 0 和 s[i-1] - s[i] <= 1不宜在建边时就加入,这会使得有向网络中的边数达到3*(mx-mn)。

    其实只需在处理完输入的边,线性改变单调性即可;

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<string.h>
    #include<algorithm>
    #include<map>
    #include<queue>
    #include<vector>
    #include<cmath>
    #include<stdlib.h>
    #include<time.h>
    using namespace std;
    #define rep0(i,l,r) for(int i = (l);i < (r);i++)
    #define rep1(i,l,r) for(int i = (l);i <= (r);i++)
    #define rep_0(i,r,l) for(int i = (r);i > (l);i--)
    #define rep_1(i,r,l) for(int i = (r);i >= (l);i--)
    #define MS0(a) memset(a,0,sizeof(a))
    #define MS1(a) memset(a,-1,sizeof(a))
    #define MSi(a) memset(a,0x3f,sizeof(a))
    #define pb push_back
    #define MK make_pair
    #define A first
    #define B second
    #define clear0 (0xFFFFFFFE)
    #define inf 0x3f3f3f3f
    #define eps 1e-8
    #define mod 1000000007
    #define zero(x) (((x)>0?(x):-(x))<eps)
    #define bitnum(a) __builtin_popcount(a)
    #define lowbit(x) (x&(-x))
    #define K(x) ((x)*(x))
    typedef pair<int,int> PII;
    typedef long long ll;
    typedef unsigned int uint;
    typedef unsigned long long ull;
    template<typename T>
    void read1(T &m)
    {
        T x = 0,f = 1;char ch = getchar();
        while(ch <'0' | ch >'9'){ if(ch == '-') f = -1;ch=getchar(); }
        while(ch >= '0' && ch <= '9'){ x = x*10 + ch - '0';ch = getchar(); }
        m = x*f;
    }
    template<typename T>
    void read2(T &a,T &b){read1(a);read1(b);}
    template<typename T>
    void read3(T &a,T &b,T &c){read1(a);read1(b);read1(c);}
    template<typename T>
    void out(T a)
    {
        if(a>9) out(a/10);
        putchar(a%10+'0');
    }
    inline ll gcd(ll a,ll b){ return b == 0? a: gcd(b,a%b); }
    inline ll lcm(ll a,ll b){ return a/gcd(a,b)*b; }
    template<class T1, class T2> inline void gmax(T1& a, T2 b){ if(a < b) a = b;}
    template<class T1, class T2> inline void gmin(T1& a, T2 b){ if(a > b) a = b;}
    const int maxn = 50001;
    int tot, dist[maxn];
    struct edge{
        int u, v, w;
        edge(){}
        edge(int u,int v,int w):u(u), v(v), w(w){}
    }e[maxn];
    int mx = 0, mn = inf;
    bool bellman_ford()
    {
        MS0(dist); //dist[mx] = 0;
        int flag = 1;
        while(flag){
            flag = 0;
    
            for(int j = 0; j < tot; j++){
                int u = e[j].u, v = e[j].v, w = e[j].w;
                if(dist[v] > dist[u] + w) dist[v] = dist[u] + w, flag = 1;
            }
    
            for(int j = mn; j < mx; j++) gmin(dist[j+1], dist[j]+1);
            for(int j = mx; j > mn; j--) gmin(dist[j-1], dist[j]);
        }
        return true;
    }
    int main()
    {
        //freopen("data.txt","r",stdin);
        //freopen("out.txt","w",stdout);
        int n;
        read1(n); tot = 0;
        rep1(i, 1, n){
            int u, v, w;
            read3(u, v, w);
            e[tot++] = edge(v, u-1, -w);        // <v ,u-1, -w>
            gmin(mn, u-1);  gmax(mx, v);
        }
        bellman_ford();
        printf("%d
    ", dist[mx] - dist[mn]);
        return 0;
    }
    
  • 相关阅读:
    预警:亚马逊出售的监控摄像机存在预装恶意软件
    opendaylight+openvswitch环境部署
    keepalived+nginx实现高可用
    Huawei ipv6 bgp配置
    F5配置http跳转https
    F5配置ssl卸载
    IBGP路由重分布进IGP路由
    H3C NQA 配置
    Cisco N7K第三方光模块的使用
    Cisco C3850交换机重启后配置无法保存的故障处理
  • 原文地址:https://www.cnblogs.com/hxer/p/5745607.html
Copyright © 2011-2022 走看看