zoukankan      html  css  js  c++  java
  • TensorFlow的初次使用+Python画3D图和计算KL散度

    ython计算KL散度
    import
    numpy as np import scipy.stats x = [np.random.randint(1,11) for i in range(10)] print(x) print(np.sum(x)) px = x/np.sum(x)#归一化 print(px) y = [np.random.randint(1, 11) for i in range(10)] print(y) print(np.sum(y)) py = y / np.sum(y)#归一化 print(py) ## scipy计算函数可以处理非归一化情况,因此这里使用# scipy.stats.entropy(x, y)或scipy.stats.entropy(px, py)均可 KL = scipy.stats.entropy(x, y) print(KL) #自己编程实现 kl= 0.0 for i in range(10): kl += px[i] * np.log(px[i]/py[i]) print(kl)
    
    
    #TensorFlow的神经网络

    import
    sys; sys.path.append("/home/hxj/anaconda3/lib/python3.6/site-packages") import tensorflow as tf import numpy as np x_data = np.random.rand(100).astype(np.float32) y_data = x_data*0.1+0.3 print(x_data) print(y_data) Weights = tf.Variable(tf.random_uniform([1], -1.0, 1.0)) biases = tf.Variable(tf.zeros([1])) y = Weights*x_data + biases print(y) loss = tf.reduce_mean(tf.square(y-y_data)) optimizer = tf.train.GradientDescentOptimizer(0.5) train = optimizer.minimize(loss) init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) for step in range(201): sess.run(train) if step % 20 == 0: print(step, sess.run(Weights), sess.run(biases))
    #Python画2D图
    from
    functools import partial import numpy from matplotlib import pyplot # Define a PDF x_samples = numpy.arange(-3, 3.01, 0.01) PDF = numpy.empty(x_samples.shape) PDF[x_samples < 0] = numpy.round(x_samples[x_samples < 0] + 3.5) / 3 PDF[x_samples >= 0] = 0.5 * numpy.cos(numpy.pi * x_samples[x_samples >= 0]) + 0.5 PDF /= numpy.sum(PDF) # Calculate approximated CDF CDF = numpy.empty(PDF.shape) cumulated = 0 for i in range(CDF.shape[0]): cumulated += PDF[i] CDF[i] = cumulated # Generate samples generate = partial(numpy.interp, xp=CDF, fp=x_samples) u_rv = numpy.random.random(10000) x = generate(u_rv) # Visualization fig, (ax0, ax1) = pyplot.subplots(ncols=2, figsize=(9, 4)) ax0.plot(x_samples, PDF) ax0.axis([-3.5, 3.5, 0, numpy.max(PDF)*1.1]) ax1.hist(x, 100) pyplot.show()

    
    
    #Python画3D图

    import
    matplotlib.pyplot as plt import numpy as np from mpl_toolkits.mplot3d import Axes3D np.random.seed(42) # 采样个数500 n_samples = 500 dim = 3 # 先生成一组3维正态分布数据,数据方向完全随机 samples = np.random.multivariate_normal( np.zeros(dim), np.eye(dim), n_samples ) # 通过把每个样本到原点距离和均匀分布吻合得到球体内均匀分布的样本 for i in range(samples.shape[0]): r = np.power(np.random.random(), 1.0/3.0) samples[i] *= r / np.linalg.norm(samples[i]) upper_samples = [] lower_samples = [] for x, y, z in samples: # 3x+2y-z=1作为判别平面 if z > 3*x + 2*y - 1: upper_samples.append((x, y, z)) else: lower_samples.append((x, y, z)) fig = plt.figure('3D scatter plot') ax = fig.add_subplot(111, projection='3d') uppers = np.array(upper_samples) lowers = np.array(lower_samples) # 用不同颜色不同形状的图标表示平面上下的样本 # 判别平面上半部分为红色圆点,下半部分为绿色三角 ax.scatter(uppers[:, 0], uppers[:, 1], uppers[:, 2], c='r', marker='o') ax.scatter(lowers[:, 0], lowers[:, 1], lowers[:, 2], c='g', marker='^') plt.show()

  • 相关阅读:
    MATLAB2019a安装
    每日日报6
    HTML表格
    HTML常见表单元素
    HTML特殊符号
    CTF-WEB:攻防世界-bug(综合应用)
    CTF-WEB:文件上传和 webshell
    CTF-WEB:BurpSuite 工具应用
    CTF-WEB:后台扫描与备份泄露
    CTF-WEB:PHP 伪协议
  • 原文地址:https://www.cnblogs.com/hxjbc/p/8241373.html
Copyright © 2011-2022 走看看