zoukankan      html  css  js  c++  java
  • HDU 4033

    Regular Polygon

    Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65768/65768 K (Java/Others)
    Total Submission(s): 2515 Accepted Submission(s): 782


    Problem Description
    In a 2_D plane, there is a point strictly in a regular polygon with N sides. If you are given the distances between it and N vertexes of the regular polygon, can you calculate the length of reguler polygon's side? The distance is defined as dist(A, B) = sqrt( (Ax-Bx)*(Ax-Bx) + (Ay-By)*(Ay-By) ). And the distances are given counterclockwise.
     
    Input
    First a integer T (T≤ 50), indicates the number of test cases. Every test case begins with a integer N (3 ≤ N ≤ 100), which is the number of regular polygon's sides. In the second line are N float numbers, indicate the distance between the point and N vertexes of the regular polygon. All the distances are between (0, 10000), not inclusive.
     
    Output
    For the ith case, output one line “Case k: ” at first. Then for every test case, if there is such a regular polygon exist, output the side's length rounded to three digits after the decimal point, otherwise output “impossible”.
     
    Sample Input
    2 3 3.0 4.0 5.0 3 1.0 2.0 3.0
     
    Sample Output
    Case 1: 6.766
    Case 2: impossible
     1 //给定一个正num边型内一点距离所有点的距离,求边长。如果无解输出impossible
     2 //所有角度和是否为2*PI,大于则缩小边,否则扩大边 
     3 #include <cstdio>
     4 #include <iostream>
     5 #include <cstring>
     6 #include <cmath>
     7 using namespace std;
     8 
     9 double ch[200];
    10 const double PI = 4 * atan( double( 1 ) );
    11 //const double PI = 3.1415926;//这个wa 
    12 int num;
    13 
    14 double is_triangle( double a, double b, double c )
    15 {
    16     if( c > a + b )
    17         return 100;
    18     else if( c < fabs( a - b ) )    
    19         return -100;
    20     else
    21         return acos( ( a * a + b * b - c * c ) / ( 2 * a * b ) );
    22 }
    23 
    24 double Acos( double a, double b, double c )
    25 {
    26     return is_triangle( a, b, c );
    27 }
    28 
    29 double total_angle( double mid )
    30 {
    31     double ans = 0;
    32     for( int i = 2; i <= num; ++i )
    33     {
    34         double t = Acos( ch[i], ch[i-1], mid );
    35         if( fabs( t ) == 100 ) //  如果mid的这个取值使得某些相邻的两条边不            
    36             return t;        //  能够形成三角形,则及时退出
    37         else
    38             ans += Acos( ch[i], ch[i-1], mid );
    39     }
    40     return ans;
    41     // 最后返回总的角度大小
    42 }
    43 
    44 double Bsearch( double ss, double ee )
    45 {
    46     double left = ss, right = ee, mid, sum_angle;
    47     while( right - left >= 1e-9 )
    48     { 
    49         mid = ( left + right ) / 2.0;
    50         double t = total_angle( mid ); // 计算出一部分的角度总和
    51         if( fabs( t ) == 100 )
    52         {
    53             if( t > 0 )
    54                 right = mid;//缩小边 
    55             else
    56                 left = mid;//扩大边 
    57         }
    58         else
    59         {
    60             sum_angle = t + Acos( ch[1] , ch[num], mid ); 
    61             if( sum_angle - 2 * PI > 1e-9 )
    62                 right = mid;
    63             else if( sum_angle - 2 * PI < -1e-9 )
    64                 left = mid;
    65             else 
    66                 return mid;
    67         }
    68     }
    69     return 0;
    70 }
    71 
    72 int main(  )
    73 {
    74     int i,j,k,T;
    75     cin>>T;
    76     for(i = 1; i <= T; ++i )
    77     {
    78         cin>>num;
    79         for(j = 1; j <= num; ++j )
    80             cin>>ch[j];
    81         //  接下来选择第num条边以及第1条边来二分答案
    82         //  根据三角形中有 C < A+B && C > A-B;   
    83         double ans = Bsearch( fabs( ch[num] - ch[1] ), ch[1] + ch[num] );
    84         printf( "Case %d: ", i );
    85         if( ans == 0 )
    86             puts( "impossible" );
    87         else
    88             printf( "%.3lf\n", ans );
    89     }
    90     return 0;
    91 }
     
  • 相关阅读:
    @RestController
    spring-boot入门环境
    spring事务管理
    Spring和hibernate框架整合
    python的for循环及数组
    PreparedStatement防止SQL注入
    python入门
    maven 依赖规则&版本锁定
    使用eclipse创建一个简单的maven项目
    maven常用命令 (1)
  • 原文地址:https://www.cnblogs.com/hxsyl/p/2669851.html
Copyright © 2011-2022 走看看