zoukankan      html  css  js  c++  java
  • Redundant Connection

    In this problem, a tree is an undirected graph that is connected and has no cycles.

    The given input is a graph that started as a tree with N nodes (with distinct values 1, 2, ..., N), with one additional edge added. The added edge has two different vertices chosen from 1 to N, and was not an edge that already existed.

    The resulting graph is given as a 2D-array of edges. Each element of edges is a pair [u, v] with u < v, that represents an undirected edge connecting nodes u and v.

    Return an edge that can be removed so that the resulting graph is a tree of N nodes. If there are multiple answers, return the answer that occurs last in the given 2D-array. The answer edge [u, v] should be in the same format, with u < v.

    Example 1:

    Input: [[1,2], [1,3], [2,3]]
    Output: [2,3]
    Explanation: The given undirected graph will be like this:
      1
     / 
    2 - 3
    

    Example 2:

    Input: [[1,2], [2,3], [3,4], [1,4], [1,5]]
    Output: [1,4]
    Explanation: The given undirected graph will be like this:
    5 - 1 - 2
        |   |
        4 - 3
    

    Note:

    • The size of the input 2D-array will be between 3 and 1000.
    • Every integer represented in the 2D-array will be between 1 and N, where N is the size of the input array.

    Update (2017-09-26):
    We have overhauled the problem description + test cases and specified clearly the graph is an undirected graph. For the directed graph follow up please see Redundant Connection II). We apologize for any inconvenience caused.

    题解:

    这题用到了并查集的算法

    reference:https://blog.csdn.net/dm_vincent/article/details/7655764

    从例子来看,是从给出的起点终点的数组edges中,找出第一个形成环的元素。

    思路:

    题目中,每个数字代表一个点,定义一个起点与终点的数组begin,begin有2001个元素,begin的下标代表终点,begin的元素代表原始起点(最开始的起点),题目可以化简为找出第一个edge,这个edge的起点和终点都有同样的一个原始起点,即形成环。

    初始化为每个起点的终点都指向自身为原始起点。然后遍历edges数组,更新新遍历的点,更新原始起点,直至找到环为止。

    以example 1为例,

    begin 的下标为 0 1 2 3 ... ...

    初始化后元素为 0 1 2 3

    [1 2] 进入后的为 0 1 1 3,2的原始起点更新为1

    [1 3] 进入后的为 0 1 1 1,3的原始起点更新为1

    [2 3] 进入后,发现2与3的原始起点一致,均为1,发现环。

    reference:

    https://blog.csdn.net/dong_beijing/article/details/78094443

    class Solution {
        int[] roots;
        public int[] findRedundantConnection(int[][] edges) {
            roots = new int[edges.length + 1];
            for(int i = 0; i < roots.length; i++) {
                roots[i] = i;
            }
            for(int[] edge : edges) {
                int root1 = find(edge[0]);
                int root2 = find(edge[1]);
                if(root1 == root2)
                    return edge;
                roots[root2] = root1;
            }
            int[] ans = new int[2];
            return ans;
        }
        
        public int find(int i) {
            while(i != roots[i]) {
                i = roots[i];
            }
            return i;
        }
    }
  • 相关阅读:
    37 图的存储结构
    hdu 1272 使用set和并查集
    题目数据输入中间读入字符
    第六篇 模块基础
    第十二章 并发编程
    并发编程(四)
    第五篇 函数进阶
    第四篇 函数基础
    并发编程(三)
    并发编程(二)
  • 原文地址:https://www.cnblogs.com/hygeia/p/10166705.html
Copyright © 2011-2022 走看看