zoukankan      html  css  js  c++  java
  • [?]*Closest Binary Search Tree Value II

    Given a non-empty binary search tree and a target value, find k values in the BST that are closest to the target.

    Note:

    • Given target value is a floating point.
    • You may assume k is always valid, that is: k ≤ total nodes.
    • You are guaranteed to have only one unique set of k values in the BST that are closest to the target.

    Follow up:
    Assume that the BST is balanced, could you solve it in less than O(n) runtime (where n = total nodes)?

     

    Hint:

    1. Consider implement these two helper functions:
      1. getPredecessor(N), which returns the next smaller node to N.
      2. getSuccessor(N), which returns the next larger node to N.
    2. Try to assume that each node has a parent pointer, it makes the problem much easier.
    3. Without parent pointer we just need to keep track of the path from the root to the current node using a stack.
    4. You would need two stacks to track the path in finding predecessor and successor node separately. 

    思路:

    The idea is to compare the predecessors and successors of the closest node to the target, we can use two stacks to track the predecessors and successors, then like what we do in merge sort, we compare and pick the closest one to the target and put it to the result list.

    As we know, inorder traversal gives us sorted predecessors, whereas reverse-inorder traversal gives us sorted successors.

    We can use iterative inorder traversal rather than recursion, but to keep the code clean, here is the recursion version.

    public List<Integer> closestKValues(TreeNode root, double target, int k) {
      List<Integer> res = new ArrayList<>();
    
      Stack<Integer> s1 = new Stack<>(); // predecessors
      Stack<Integer> s2 = new Stack<>(); // successors
    
      inorder(root, target, false, s1);
      inorder(root, target, true, s2);
    
      while (k-- > 0) {
        if (s1.isEmpty())
          res.add(s2.pop());
        else if (s2.isEmpty())
          res.add(s1.pop());
        else if (Math.abs(s1.peek() - target) < Math.abs(s2.peek() - target))
          res.add(s1.pop());
        else
          res.add(s2.pop());
      }
    
      return res;
    }
    
    // inorder traversal
    void inorder(TreeNode root, double target, boolean reverse, Stack<Integer> stack) {
      if (root == null) return;
    
      inorder(reverse ? root.right : root.left, target, reverse, stack);
      // early terminate, no need to traverse the whole tree
      if ((reverse && root.val <= target) || (!reverse && root.val > target)) return;
      // track the value of current node
      stack.push(root.val);
      inorder(reverse ? root.left : root.right, target, reverse, stack);
    }

    reference:https://leetcode.com/discuss/55240/ac-clean-java-solution-using-two-stacks

    解法二:

    public class Solution {
        public List<Integer> closestKValues(TreeNode root, double target, int k) {
            List<Integer> ret = new LinkedList<>();
            Stack<TreeNode> succ = new Stack<>();
            Stack<TreeNode> pred = new Stack<>();
            initializePredecessorStack(root, target, pred);
            initializeSuccessorStack(root, target, succ);
            if(!succ.isEmpty() && !pred.isEmpty() && succ.peek().val == pred.peek().val) {
                getNextPredecessor(pred);
            }
            while(k-- > 0) {
                if(succ.isEmpty()) {
                    ret.add(getNextPredecessor(pred));
                } else if(pred.isEmpty()) {
                    ret.add(getNextSuccessor(succ));
                } else {
                    double succ_diff = Math.abs((double)succ.peek().val - target);
                    double pred_diff = Math.abs((double)pred.peek().val - target);
                    if(succ_diff < pred_diff) {
                        ret.add(getNextSuccessor(succ));
                    } else {
                        ret.add(getNextPredecessor(pred));
                    }
                }
            }
            return ret;
        }
    
        private void initializeSuccessorStack(TreeNode root, double target, Stack<TreeNode> succ) {
            while(root != null) {
                if(root.val == target) {
                    succ.push(root);
                    break;
                } else if(root.val > target) {
                    succ.push(root);
                    root = root.left;
                } else {
                    root = root.right;
                }
            }
        }
    
        private void initializePredecessorStack(TreeNode root, double target, Stack<TreeNode> pred) {
            while(root != null){
                if(root.val == target){
                    pred.push(root);
                    break;
                } else if(root.val < target){
                    pred.push(root);
                    root = root.right;
                } else{
                    root = root.left;
                }
            }
        }
    
        private int getNextSuccessor(Stack<TreeNode> succ) {
            TreeNode curr = succ.pop();
            int ret = curr.val;
            curr = curr.right;
            while(curr != null) {
                succ.push(curr);
                curr = curr.left;
            }
            return ret;
        }
    
        private int getNextPredecessor(Stack<TreeNode> pred) {
            TreeNode curr = pred.pop();
            int ret = curr.val;
            curr = curr.left;
            while(curr != null) {
                pred.push(curr);
                curr = curr.right;
            }
            return ret;
        }
    }

    reference:https://leetcode.com/discuss/55682/o-logn-java-solution-with-two-stacks-following-hint

  • 相关阅读:
    GFS文件系统和在RedHat Linux下的配置
    FastDFS connect timed out
    大型高并发高负载网站的系统架构
    FastDFS 上传文件
    FastDFS常见命令
    FastDFS安装、配置、部署
    分布式文件系统FastDFS原理介绍
    Jenkins+Maven+Svn搭建持续集成环境持续集成和自动部署
    Java中的向上转型和向下转型
    Java中的final修饰符
  • 原文地址:https://www.cnblogs.com/hygeia/p/5104293.html
Copyright © 2011-2022 走看看