zoukankan      html  css  js  c++  java
  • *Maximum Length Palindromic Sub-Sequence of an Array.

    /* Write a function to compute the maximum length palindromic sub-sequence of an array. 
    A palindrome is a sequence which is equal to its reverse. 
    A sub-sequence of an array is a sequence which can be constructed by removing elements of the array. 
    Ex: Given [4,1,2,3,4,5,6,5,4,3,4,4,4,4,4,4,4] should return 10 (all 4's) */ 
    class Interview { 
    public static int maxLengthPalindrome(int[] values) { 
    //ur implementation here 
    }

    解法一:

    Implemtation is recursive, and it's much worse than O(n^2). Should use recursive with memorization, then can improve to O(n^2).
    However, recursive memorization doesn't improve over bottom-up and it has costly overhead. Bottom-up is better in this problem.

    public class Solution {
        public static void main(String[] args) {    
            int arr[] = new int[] {4,1,2,3,4,5,6,5,4,3,4,4,4,4,4,4,4};    
            System.out.println(maxLengthPalindrome(arr, 0, arr.length-1));
        }
    
        public static int maxLengthPalindrome(int[] values, int i, int j) {
            //check if indexes cross each other
            //return 1 if index overlap for else condition below
            //return 0 if index i<j for condition if below
            if(j<=i) return j-i+1;
            if(values[i]==values[j]) return 2 + maxLengthPalindrome(values, i+1, j-1);
            else return Math.max(maxLengthPalindrome(values, i+1, j), maxLengthPalindrome(values, i, j-1));        
        }
    }

    解法二:

    The code with the memoization technique which produces O(n^2) complexity is

    public int dpLps(int[] a, int i, int j, Integer[][] lps) {
            if (i > j)
                return 0;
            if (lps[i][j] == null) {
                if (i == j)
                    lps[i][j] = 1;
                else {
                    if (a[i] == a[j])
                        lps[i][j] = 2 + dpLps(a, i + 1, j - 1, lps);
                    else
                        lps[i][j] = Math.max(dpLps(a, i + 1, j, lps),
                                dpLps(a, i, j - 1, lps));
                }
            }
            return lps[i][j];
        }

    you have to call the function as,

    dpLps(a, 0, a.length - 1,new Integer[a.length][a.length])
  • 相关阅读:
    Linux基础:Day05
    Linux基础:Day04
    Linux用户和用户组管理
    Linux基础:Day03
    Linux基础:Day02
    Linux基础:Day01
    Shell:Day10
    shell概述和shell脚本执行方式
    fdisk分区
    文件系统常用命令
  • 原文地址:https://www.cnblogs.com/hygeia/p/5156497.html
Copyright © 2011-2022 走看看