zoukankan      html  css  js  c++  java
  • elasticsearch最全详细使用教程:搜索详解

    一、搜索API
     

    1. 搜索API 端点地址
    从索引tweet里面搜索字段user为kimchy的记录

    GET /twitter/_search?q=user:kimchy
    从索引tweet,user里面搜索字段user为kimchy的记录

    GET /twitter/tweet,user/_search?q=user:kimchy
    GET /kimchy,elasticsearch/_search?q=tag:wow
    从所有索引里面搜索字段tag为wow的记录

    GET /_all/_search?q=tag:wow
    GET /_search?q=tag:wow
    说明:搜索的端点地址可以是多索引多mapping type的。搜索的参数可作为URI请求参数给出,也可用 request body 给出

    2. URI Search
    URI 搜索方式通过URI参数来指定查询相关参数。让我们可以快速做一个查询。

    GET /twitter/_search?q=user:kimchy
    可用的参数请参考: https://www.elastic.co/guide/en/elasticsearch/reference/current/search-uri-request.html

    3. 查询结果说明


    5. 特殊的查询参数用法
     如果我们只想知道有多少文档匹配某个查询,可以这样用参数:

    GET /bank/_search?q=city:b*&size=0
     

     如果我们只想知道有没有文档匹配某个查询,可以这样用参数:

    GET /bank/_search?q=city:b*&size=0&terminate_after=1
     

     比较两个查询的结果可以知道第一个查询返回所有的命中文档数,第二个查询由于只需要知道有没有文档,所以只要有文档就立即返回

     6. Request body Search
     Request body 搜索方式以JSON格式在请求体中定义查询 query。请求方式可以是 GET 、POST 。

    GET /twitter/_search
    {
    "query" : {
    "term" : { "user" : "kimchy" }
    }
    }
    可用的参数:

    timeout:请求超时时长,限定在指定时长内响应(即使没查完);
    from: 分页的起始行,默认0;
    size:分页大小;
    request_cache:是否缓存请求结果,默认true。
    terminate_after:限定每个分片取几个文档。如果设置,则响应将有一个布尔型字段terminated_early来指示查询执行是否实际已经terminate_early。缺省为no terminate_after;
    search_type:查询的执行方式,可选值dfs_query_then_fetch or query_then_fetch ,默认: query_then_fetch ;
    batched_reduce_size:一次在协调节点上应该减少的分片结果的数量。如果请求中的潜在分片数量可能很大,则应将此值用作保护机制以减少每个搜索请求的内存开销。

    6.1 query 元素定义查询

    query 元素用Query DSL 来定义查询。

    GET /_search
    {
    "query" : {
    "term" : { "user" : "kimchy" }
    }
    }
    6.2 指定返回哪些内容

    6.2.1 source filter  对_source字段进行选择


    GET /_search
    {
    "_source": false,
    "query" : {
    "term" : { "user" : "kimchy" }
    }
    }
    通配符查询


    GET /_search
    {
    "_source": [ "obj1.*", "obj2.*" ],
    "query" : {
    "term" : { "user" : "kimchy" }
    }
    }

    GET /_search
    {
    "_source": "obj.*",
    "query" : {
    "term" : { "user" : "kimchy" }
    }
    }
    包含什么不包含什么


    GET /_search
    {
    "_source": {
    "includes": [ "obj1.*", "obj2.*" ],
    "excludes": [ "*.description" ]
    },
    "query" : {
    "term" : { "user" : "kimchy" }
    }
    }
    6.2.2 stored_fields 来指定返回哪些stored字段


    GET /_search
    {
    "stored_fields" : ["user", "postDate"],
    "query" : {
    "term" : { "user" : "kimchy" }
    }
    }
    说明:* 可用来指定返回所有存储字段

    6.2.3 docValue Field 返回存储了docValue的字段值


    GET /_search
    {
    "query" : {
    "match_all": {}
    },
    "docvalue_fields" : ["test1", "test2"]
    }
    6.2.4 version 来指定返回文档的版本字段


    GET /_search
    {
    "version": true,
    "query" : {
    "term" : { "user" : "kimchy" }
    }
    }
    6.2.5 explain 返回文档的评分解释


    GET /_search
    {
    "explain": true,
    "query" : {
    "term" : { "user" : "kimchy" }
    }
    }
    6.2.6 Script Field 用脚本来对命中的每个文档的字段进行运算后返回


    GET /bank/_search
    {
    "query": {
    "match_all": {}
    },
    "script_fields": {
    "test1": {
    "script": {
    "lang": "painless",
    "source": "doc['balance'].value * 2"
    }
    },
    "test2": {
    "script": {
    "lang": "painless",
    <!-- doc指文档-->
    "source": "doc['age'].value * params.factor",
    "params": {
    "factor": 2
    }
    }
    } }}
    搜索结果:

    {
    "took": 3,
    "timed_out": false,
    "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
    },
    "hits": {
    "total": 1000,
    "max_score": 1,
    "hits": [
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "25",
    "_score": 1,
    "fields": {
    "test1": [
    ],
    "test2": [
    ]
    }
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "44",
    "_score": 1,
    "fields": {
    "test1": [
    ],
    "test2": [
    ]
    }
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "99",
    "_score": 1,
    "fields": {
    "test1": [
    ],
    "test2": [
    ]
    }
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "119",
    "_score": 1,
    "fields": {
    "test1": [
    ],
    "test2": [
    ]
    }
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "126",
    "_score": 1,
    "fields": {
    "test1": [
    ],
    "test2": [
    ]
    }
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "145",
    "_score": 1,
    "fields": {
    "test1": [
    ],
    "test2": [
    ]
    }
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "183",
    "_score": 1,
    "fields": {
    "test1": [
    ],
    "test2": [
    ]
    }
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "190",
    "_score": 1,
    "fields": {
    "test1": [
    ],
    "test2": [
    ]
    }
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "208",
    "_score": 1,
    "fields": {
    "test1": [
    ],
    "test2": [
    ]
    }
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "222",
    "_score": 1,
    "fields": {
    "test1": [
    ],
    "test2": [
    ]
    }
    }
    ]
    }
    }

    GET /bank/_search
    {
    "query": {
    "match_all": {}
    },
    "script_fields": {
    "ffx": {
    "script": {
    "lang": "painless",
    "source": "doc['age'].value * doc['balance'].value"
    }
    },
    "balance*2": {
    "script": {
    "lang": "painless",
    "source": "params['_source'].balance*2"
    }
    }
    }
    }
    说明:

    params  _source 取 _source字段值

    官方推荐使用doc,理由是用doc效率比取_source 高

    搜索结果:

    {
    "took": 26,
    "timed_out": false,
    "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
    },
    "hits": {
    "total": 1000,
    "max_score": 1,
    "hits": [
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "25",
    "_score": 1,
    "fields": {
    "balance*2": [
    ],
    "ffx": [
    ]
    }
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "44",
    "_score": 1,
    "fields": {
    "balance*2": [
    ],
    "ffx": [
    ]
    }
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "99",
    "_score": 1,
    "fields": {
    "balance*2": [
    ],
    "ffx": [
    ]
    }
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "119",
    "_score": 1,
    "fields": {
    "balance*2": [
    ],
    "ffx": [
    ]
    }
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "126",
    "_score": 1,
    "fields": {
    "balance*2": [
    ],
    "ffx": [
    ]
    }
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "145",
    "_score": 1,
    "fields": {
    "balance*2": [
    ],
    "ffx": [
    ]
    }
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "183",
    "_score": 1,
    "fields": {
    "balance*2": [
    ],
    "ffx": [
    ]
    }
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "190",
    "_score": 1,
    "fields": {
    "balance*2": [
    ],
    "ffx": [
    ]
    }
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "208",
    "_score": 1,
    "fields": {
    "balance*2": [
    ],
    "ffx": [
    ]
    }
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "222",
    "_score": 1,
    "fields": {
    "balance*2": [
    ],
    "ffx": [
    ]
    }
    }
    ]
    }
    }
    6.2.7 min_score  限制最低评分得分


    GET /_search
    {
    "min_score": 0.5,
    "query" : {
    "term" : { "user" : "kimchy" }
    }
    }
    6.2.8 post_filter  后置过滤:在查询命中文档、完成聚合后,再对命中的文档进行过滤。

    如:要在一次查询中查询品牌为gucci且颜色为红色的shirts,同时还要得到gucci品牌各颜色的shirts的分面统计。

    创建索引并指定mappping:


    PUT /shirts
    {
    "mappings": {
    "_doc": {
    "properties": {
    "brand": { "type": "keyword"},
    "color": { "type": "keyword"},
    "model": { "type": "keyword"}
    }
    }
    }
    }
    往索引里面放入文档即类似数据库里面的向表插入一行数据,并立即刷新


    PUT /shirts/_doc/1?refresh
    {
    "brand": "gucci",
    "color": "red",
    "model": "slim"
    }
    PUT /shirts/_doc/2?refresh
    {
    "brand": "gucci",
    "color": "green",
    "model": "seec"
    }
    执行查询:


    GET /shirts/_search
    {
    "query": {
    "bool": {
    "filter": {
    "term": { "brand": "gucci" }
    }
    }
    },
    "aggs": {
    "colors": {
    "terms": { "field": "color" }
    }
    },
    "post_filter": {
    "term": { "color": "red" }
    }
    }
    查询结果


    {
    "took": 109,
    "timed_out": false,
    "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
    },
    "hits": {
    "total": 1,
    "max_score": 0,
    "hits": [
    {
    "_index": "shirts",
    "_type": "_doc",
    "_id": "1",
    "_score": 0,
    "_source": {
    "brand": "gucci",
    "color": "red",
    "model": "slim"
    }
    }
    ]
    },
    "aggregations": {
    "colors": {
    "doc_count_error_upper_bound": 0,
    "sum_other_doc_count": 0,
    "buckets": [
    {
    "key": "green",
    "doc_count": 1
    },
    {
    "key": "red",
    "doc_count": 1
    }
    ]
    }
    }
    }
    6.2.9 sort  排序

    可以指定按一个或多个字段排序。也可通过_score指定按评分值排序,_doc 按索引顺序排序。默认是按相关性评分从高到低排序。


    GET /bank/_search
    {
    "query": {
    "match_all": {}
    },
    "sort": [
    {
    "age": {
    "order": "desc"
    } },
    {
    "balance": {
    "order": "asc"
    } },
    "_score"
    ]
    }
    说明:

    order 值:asc、desc。如果不给定,默认是asc,_score默认是desc

    查询结果:

    {
    "took": 181,
    "timed_out": false,
    "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
    },
    "hits": {
    "total": 1000,
    "max_score": null,
    "hits": [
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "549",
    "_score": 1,
    "_source": {
    "account_number": 549,
    "balance": 1932,
    "firstname": "Jacqueline",
    "lastname": "Maxwell",
    "age": 40,
    "gender": "M",
    "address": "444 Schenck Place",
    "employer": "Fuelworks",
    "email": "jacquelinemaxwell@fuelworks.com",
    "city": "Oretta",
    "state": "OR"
    },
    "sort": [
    40,
    1932,
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "306",
    "_score": 1,
    "_source": {
    "account_number": 306,
    "balance": 2171,
    "firstname": "Hensley",
    "lastname": "Hardin",
    "age": 40,
    "gender": "M",
    "address": "196 Maujer Street",
    "employer": "Neocent",
    "email": "hensleyhardin@neocent.com",
    "city": "Reinerton",
    "state": "HI"
    },
    "sort": [
    40,
    2171,
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "960",
    "_score": 1,
    "_source": {
    "account_number": 960,
    "balance": 2905,
    "firstname": "Curry",
    "lastname": "Vargas",
    "age": 40,
    "gender": "M",
    "address": "242 Blake Avenue",
    "employer": "Pearlesex",
    "email": "curryvargas@pearlesex.com",
    "city": "Henrietta",
    "state": "NH"
    },
    "sort": [
    40,
    2905,
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "584",
    "_score": 1,
    "_source": {
    "account_number": 584,
    "balance": 5346,
    "firstname": "Pearson",
    "lastname": "Bryant",
    "age": 40,
    "gender": "F",
    "address": "971 Heyward Street",
    "employer": "Anacho",
    "email": "pearsonbryant@anacho.com",
    "city": "Bluffview",
    "state": "MN"
    },
    "sort": [
    40,
    5346,
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "567",
    "_score": 1,
    "_source": {
    "account_number": 567,
    "balance": 6507,
    "firstname": "Diana",
    "lastname": "Dominguez",
    "age": 40,
    "gender": "M",
    "address": "419 Albany Avenue",
    "employer": "Ohmnet",
    "email": "dianadominguez@ohmnet.com",
    "city": "Wildwood",
    "state": "TX"
    },
    "sort": [
    40,
    6507,
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "938",
    "_score": 1,
    "_source": {
    "account_number": 938,
    "balance": 9597,
    "firstname": "Sharron",
    "lastname": "Santos",
    "age": 40,
    "gender": "F",
    "address": "215 Matthews Place",
    "employer": "Zenco",
    "email": "sharronsantos@zenco.com",
    "city": "Wattsville",
    "state": "VT"
    },
    "sort": [
    40,
    9597,
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "810",
    "_score": 1,
    "_source": {
    "account_number": 810,
    "balance": 10563,
    "firstname": "Alyssa",
    "lastname": "Ortega",
    "age": 40,
    "gender": "M",
    "address": "977 Clymer Street",
    "employer": "Eventage",
    "email": "alyssaortega@eventage.com",
    "city": "Convent",
    "state": "SC"
    },
    "sort": [
    40,
    10563,
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "302",
    "_score": 1,
    "_source": {
    "account_number": 302,
    "balance": 11298,
    "firstname": "Isabella",
    "lastname": "Hewitt",
    "age": 40,
    "gender": "M",
    "address": "455 Bedford Avenue",
    "employer": "Cincyr",
    "email": "isabellahewitt@cincyr.com",
    "city": "Blanford",
    "state": "IN"
    },
    "sort": [
    40,
    11298,
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "792",
    "_score": 1,
    "_source": {
    "account_number": 792,
    "balance": 13109,
    "firstname": "Becky",
    "lastname": "Jimenez",
    "age": 40,
    "gender": "F",
    "address": "539 Front Street",
    "employer": "Isologia",
    "email": "beckyjimenez@isologia.com",
    "city": "Summertown",
    "state": "MI"
    },
    "sort": [
    40,
    13109,
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "495",
    "_score": 1,
    "_source": {
    "account_number": 495,
    "balance": 13478,
    "firstname": "Abigail",
    "lastname": "Nichols",
    "age": 40,
    "gender": "F",
    "address": "887 President Street",
    "employer": "Enquility",
    "email": "abigailnichols@enquility.com",
    "city": "Bagtown",
    "state": "NM"
    },
    "sort": [
    40,
    13478,
    ]
    }
    ]
    }
    }
    结果中每个文档会有排序字段值给出


    "hits": {
    "total": 1000,
    "max_score": null,
    "hits": [
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "549",
    "_score": 1,
    "_source": {
    "account_number": 549,
    "balance": 1932, "age": 40, "state": "OR"
    },
    "sort": [
    40,
    1932,
    1
    ]
    }
     

    多值字段排序

    对于值是数组或多值的字段,也可进行排序,通过mode参数指定按多值的:


    PUT /my_index/_doc/1?refresh
    {
    "product": "chocolate",
    "price": [20, 4]
    }

    POST /_search
    {
    "query" : {
    "term" : { "product" : "chocolate" }
    },
    "sort" : [
    {"price" : {"order" : "asc", "mode" : "avg"}}
    ]
    }
     Missing values  缺失该字段的文档

    missing 的值可以是 _last, _first


    GET /_search
    {
    "sort" : [
    { "price" : {"missing" : "_last"} }
    ],
    "query" : {
    "term" : { "product" : "chocolate" }
    }
    }
     地理空间距离排序

    官方文档:

    https://www.elastic.co/guide/en/elasticsearch/reference/current/search-request-sort.html#geo-sorting


    GET /_search
    {
    "sort" : [
    {
    "_geo_distance" : {
    "pin.location" : [-70, 40],
    "order" : "asc",
    "unit" : "km",
    "mode" : "min",
    "distance_type" : "arc"
    }
    }
    ],
    "query" : {
    "term" : { "user" : "kimchy" }
    }
    }
    参数说明:

    _geo_distance 距离排序关键字
    pin.location是 geo_point 类型的字段
    distance_type:距离计算方式 arc球面 、plane 平面。
    unit: 距离单位 km 、m 默认m

    Script Based Sorting 基于脚本计算的排序


    GET /_search
    {
    "query" : {
    "term" : { "user" : "kimchy" }
    },
    "sort" : {
    "_script" : {
    "type" : "number",
    "script" : {
    "lang": "painless",
    "source": "doc['field_name'].value * params.factor",
    "params" : {
    "factor" : 1.1
    }
    },
    "order" : "asc"
    }
    }
    }


     6.3.0 折叠用 collapse指定根据某个字段对命中结果进行折叠


    GET /bank/_search
    {
    "query": {
    "match_all": {}
    },
    "collapse" : {
    "field" : "age"
    },
    "sort": ["balance"]
    }
     查询结果:

    {
    "took": 56,
    "timed_out": false,
    "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
    },
    "hits": {
    "total": 1000,
    "max_score": null,
    "hits": [
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "820",
    "_score": null,
    "_source": {
    "account_number": 820,
    "balance": 1011,
    "firstname": "Shepard",
    "lastname": "Ramsey",
    "age": 24,
    "gender": "F",
    "address": "806 Village Court",
    "employer": "Mantro",
    "email": "shepardramsey@mantro.com",
    "city": "Tibbie",
    "state": "NV"
    },
    "fields": {
    "age": [
    ]
    },
    "sort": [
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "894",
    "_score": null,
    "_source": {
    "account_number": 894,
    "balance": 1031,
    "firstname": "Tyler",
    "lastname": "Fitzgerald",
    "age": 32,
    "gender": "M",
    "address": "787 Meserole Street",
    "employer": "Jetsilk",
    "email": "tylerfitzgerald@jetsilk.com",
    "city": "Woodlands",
    "state": "WV"
    },
    "fields": {
    "age": [
    ]
    },
    "sort": [
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "953",
    "_score": null,
    "_source": {
    "account_number": 953,
    "balance": 1110,
    "firstname": "Baxter",
    "lastname": "Black",
    "age": 27,
    "gender": "M",
    "address": "720 Stillwell Avenue",
    "employer": "Uplinx",
    "email": "baxterblack@uplinx.com",
    "city": "Drummond",
    "state": "MN"
    },
    "fields": {
    "age": [
    ]
    },
    "sort": [
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "87",
    "_score": null,
    "_source": {
    "account_number": 87,
    "balance": 1133,
    "firstname": "Hewitt",
    "lastname": "Kidd",
    "age": 22,
    "gender": "M",
    "address": "446 Halleck Street",
    "employer": "Isologics",
    "email": "hewittkidd@isologics.com",
    "city": "Coalmont",
    "state": "ME"
    },
    "fields": {
    "age": [
    ]
    },
    "sort": [
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "749",
    "_score": null,
    "_source": {
    "account_number": 749,
    "balance": 1249,
    "firstname": "Rush",
    "lastname": "Boyle",
    "age": 36,
    "gender": "M",
    "address": "310 Argyle Road",
    "employer": "Sportan",
    "email": "rushboyle@sportan.com",
    "city": "Brady",
    "state": "WA"
    },
    "fields": {
    "age": [
    ]
    },
    "sort": [
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "315",
    "_score": null,
    "_source": {
    "account_number": 315,
    "balance": 1314,
    "firstname": "Clare",
    "lastname": "Morrow",
    "age": 33,
    "gender": "F",
    "address": "728 Madeline Court",
    "employer": "Gaptec",
    "email": "claremorrow@gaptec.com",
    "city": "Mapletown",
    "state": "PA"
    },
    "fields": {
    "age": [
    ]
    },
    "sort": [
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "348",
    "_score": null,
    "_source": {
    "account_number": 348,
    "balance": 1360,
    "firstname": "Karina",
    "lastname": "Russell",
    "age": 37,
    "gender": "M",
    "address": "797 Moffat Street",
    "employer": "Limozen",
    "email": "karinarussell@limozen.com",
    "city": "Riegelwood",
    "state": "RI"
    },
    "fields": {
    "age": [
    ]
    },
    "sort": [
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "490",
    "_score": null,
    "_source": {
    "account_number": 490,
    "balance": 1447,
    "firstname": "Strong",
    "lastname": "Hendrix",
    "age": 26,
    "gender": "F",
    "address": "134 Beach Place",
    "employer": "Duoflex",
    "email": "stronghendrix@duoflex.com",
    "city": "Allentown",
    "state": "ND"
    },
    "fields": {
    "age": [
    ]
    },
    "sort": [
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "174",
    "_score": null,
    "_source": {
    "account_number": 174,
    "balance": 1464,
    "firstname": "Gamble",
    "lastname": "Pierce",
    "age": 23,
    "gender": "F",
    "address": "650 Eagle Street",
    "employer": "Matrixity",
    "email": "gamblepierce@matrixity.com",
    "city": "Abiquiu",
    "state": "OR"
    },
    "fields": {
    "age": [
    ]
    },
    "sort": [
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "111",
    "_score": null,
    "_source": {
    "account_number": 111,
    "balance": 1481,
    "firstname": "Traci",
    "lastname": "Allison",
    "age": 35,
    "gender": "M",
    "address": "922 Bryant Street",
    "employer": "Enjola",
    "email": "traciallison@enjola.com",
    "city": "Robinette",
    "state": "OR"
    },
    "fields": {
    "age": [
    ]
    },
    "sort": [
    ]
    }
    ]
    }
    }
     高级折叠


    GET /bank/_search
    {
    "query": {
    "match_all": {}
    },
    "collapse" : {
    "field" : "age" ,
    <!--指定inner_hits来解释折叠 -->
    "inner_hits": {
    "name": "details", <!-- 自命名 -->
    "size": 5, <!-- 指定每组取几个文档 -->
    "sort": [{ "balance": "asc" }] <!-- 组内排序 -->
    },
    "max_concurrent_group_searches": 4 <!-- 指定组查询的并发数 -->
    },
    "sort": ["balance"]
    }
     查询结果:

    {
    "took": 60,
    "timed_out": false,
    "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
    },
    "hits": {
    "total": 1000,
    "max_score": null,
    "hits": [
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "820",
    "_score": null,
    "_source": {
    "account_number": 820,
    "balance": 1011,
    "firstname": "Shepard",
    "lastname": "Ramsey",
    "age": 24,
    "gender": "F",
    "address": "806 Village Court",
    "employer": "Mantro",
    "email": "shepardramsey@mantro.com",
    "city": "Tibbie",
    "state": "NV"
    },
    "fields": {
    "age": [
    ]
    },
    "sort": [
    ],
    "inner_hits": {
    "details": {
    "hits": {
    "total": 42,
    "max_score": null,
    "hits": [
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "820",
    "_score": null,
    "_source": {
    "account_number": 820,
    "balance": 1011,
    "firstname": "Shepard",
    "lastname": "Ramsey",
    "age": 24,
    "gender": "F",
    "address": "806 Village Court",
    "employer": "Mantro",
    "email": "shepardramsey@mantro.com",
    "city": "Tibbie",
    "state": "NV"
    },
    "sort": [
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "924",
    "_score": null,
    "_source": {
    "account_number": 924,
    "balance": 3811,
    "firstname": "Hilary",
    "lastname": "Leonard",
    "age": 24,
    "gender": "M",
    "address": "235 Hegeman Avenue",
    "employer": "Metroz",
    "email": "hilaryleonard@metroz.com",
    "city": "Roosevelt",
    "state": "ME"
    },
    "sort": [
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "819",
    "_score": null,
    "_source": {
    "account_number": 819,
    "balance": 3971,
    "firstname": "Karyn",
    "lastname": "Medina",
    "age": 24,
    "gender": "F",
    "address": "417 Utica Avenue",
    "employer": "Qnekt",
    "email": "karynmedina@qnekt.com",
    "city": "Kerby",
    "state": "WY"
    },
    "sort": [
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "77",
    "_score": null,
    "_source": {
    "account_number": 77,
    "balance": 5724,
    "firstname": "Byrd",
    "lastname": "Conley",
    "age": 24,
    "gender": "F",
    "address": "698 Belmont Avenue",
    "employer": "Zidox",
    "email": "byrdconley@zidox.com",
    "city": "Rockbridge",
    "state": "SC"
    },
    "sort": [
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "493",
    "_score": null,
    "_source": {
    "account_number": 493,
    "balance": 5871,
    "firstname": "Campbell",
    "lastname": "Best",
    "age": 24,
    "gender": "M",
    "address": "297 Friel Place",
    "employer": "Fanfare",
    "email": "campbellbest@fanfare.com",
    "city": "Kidder",
    "state": "GA"
    },
    "sort": [
    ]
    }
    ]
    }
    }
    }
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "894",
    "_score": null,
    "_source": {
    "account_number": 894,
    "balance": 1031,
    "firstname": "Tyler",
    "lastname": "Fitzgerald",
    "age": 32,
    "gender": "M",
    "address": "787 Meserole Street",
    "employer": "Jetsilk",
    "email": "tylerfitzgerald@jetsilk.com",
    "city": "Woodlands",
    "state": "WV"
    },
    "fields": {
    "age": [
    ]
    },
    "sort": [
    ],
    "inner_hits": {
    "details": {
    "hits": {
    "total": 52,
    "max_score": null,
    "hits": [
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "894",
    "_score": null,
    "_source": {
    "account_number": 894,
    "balance": 1031,
    "firstname": "Tyler",
    "lastname": "Fitzgerald",
    "age": 32,
    "gender": "M",
    "address": "787 Meserole Street",
    "employer": "Jetsilk",
    "email": "tylerfitzgerald@jetsilk.com",
    "city": "Woodlands",
    "state": "WV"
    },
    "sort": [
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "402",
    "_score": null,
    "_source": {
    "account_number": 402,
    "balance": 1282,
    "firstname": "Pacheco",
    "lastname": "Rosales",
    "age": 32,
    "gender": "M",
    "address": "538 Pershing Loop",
    "employer": "Circum",
    "email": "pachecorosales@circum.com",
    "city": "Elbert",
    "state": "ID"
    },
    "sort": [
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "735",
    "_score": null,
    "_source": {
    "account_number": 735,
    "balance": 3984,
    "firstname": "Loraine",
    "lastname": "Willis",
    "age": 32,
    "gender": "F",
    "address": "928 Grove Street",
    "employer": "Gadtron",
    "email": "lorainewillis@gadtron.com",
    "city": "Lowgap",
    "state": "NY"
    },
    "sort": [
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "745",
    "_score": null,
    "_source": {
    "account_number": 745,
    "balance": 4572,
    "firstname": "Jacobs",
    "lastname": "Sweeney",
    "age": 32,
    "gender": "M",
    "address": "189 Lott Place",
    "employer": "Comtent",
    "email": "jacobssweeney@comtent.com",
    "city": "Advance",
    "state": "NJ"
    },
    "sort": [
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "173",
    "_score": null,
    "_source": {
    "account_number": 173,
    "balance": 5989,
    "firstname": "Whitley",
    "lastname": "Blevins",
    "age": 32,
    "gender": "M",
    "address": "127 Brooklyn Avenue",
    "employer": "Pawnagra",
    "email": "whitleyblevins@pawnagra.com",
    "city": "Rodanthe",
    "state": "ND"
    },
    "sort": [
    ]
    }
    ]
    }
    }
    }
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "953",
    "_score": null,
    "_source": {
    "account_number": 953,
    "balance": 1110,
    "firstname": "Baxter",
    "lastname": "Black",
    "age": 27,
    "gender": "M",
    "address": "720 Stillwell Avenue",
    "employer": "Uplinx",
    "email": "baxterblack@uplinx.com",
    "city": "Drummond",
    "state": "MN"
    },
    "fields": {
    "age": [
    ]
    },
    "sort": [
    ],
    "inner_hits": {
    "details": {
    "hits": {
    "total": 39,
    "max_score": null,
    "hits": [
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "953",
    "_score": null,
    "_source": {
    "account_number": 953,
    "balance": 1110,
    "firstname": "Baxter",
    "lastname": "Black",
    "age": 27,
    "gender": "M",
    "address": "720 Stillwell Avenue",
    "employer": "Uplinx",
    "email": "baxterblack@uplinx.com",
    "city": "Drummond",
    "state": "MN"
    },
    "sort": [
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "123",
    "_score": null,
    "_source": {
    "account_number": 123,
    "balance": 3079,
    "firstname": "Cleo",
    "lastname": "Beach",
    "age": 27,
    "gender": "F",
    "address": "653 Haring Street",
    "employer": "Proxsoft",
    "email": "cleobeach@proxsoft.com",
    "city": "Greensburg",
    "state": "ME"
    },
    "sort": [
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "637",
    "_score": null,
    "_source": {
    "account_number": 637,
    "balance": 3169,
    "firstname": "Kathy",
    "lastname": "Carter",
    "age": 27,
    "gender": "F",
    "address": "410 Jamison Lane",
    "employer": "Limage",
    "email": "kathycarter@limage.com",
    "city": "Ernstville",
    "state": "WA"
    },
    "sort": [
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "528",
    "_score": null,
    "_source": {
    "account_number": 528,
    "balance": 4071,
    "firstname": "Thompson",
    "lastname": "Hoover",
    "age": 27,
    "gender": "F",
    "address": "580 Garden Street",
    "employer": "Portalis",
    "email": "thompsonhoover@portalis.com",
    "city": "Knowlton",
    "state": "AL"
    },
    "sort": [
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "142",
    "_score": null,
    "_source": {
    "account_number": 142,
    "balance": 4544,
    "firstname": "Vang",
    "lastname": "Hughes",
    "age": 27,
    "gender": "M",
    "address": "357 Landis Court",
    "employer": "Bolax",
    "email": "vanghughes@bolax.com",
    "city": "Emerald",
    "state": "WY"
    },
    "sort": [
    ]
    }
    ]
    }
    }
    }
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "87",
    "_score": null,
    "_source": {
    "account_number": 87,
    "balance": 1133,
    "firstname": "Hewitt",
    "lastname": "Kidd",
    "age": 22,
    "gender": "M",
    "address": "446 Halleck Street",
    "employer": "Isologics",
    "email": "hewittkidd@isologics.com",
    "city": "Coalmont",
    "state": "ME"
    },
    "fields": {
    "age": [
    ]
    },
    "sort": [
    ],
    "inner_hits": {
    "details": {
    "hits": {
    "total": 51,
    "max_score": null,
    "hits": [
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "87",
    "_score": null,
    "_source": {
    "account_number": 87,
    "balance": 1133,
    "firstname": "Hewitt",
    "lastname": "Kidd",
    "age": 22,
    "gender": "M",
    "address": "446 Halleck Street",
    "employer": "Isologics",
    "email": "hewittkidd@isologics.com",
    "city": "Coalmont",
    "state": "ME"
    },
    "sort": [
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "411",
    "_score": null,
    "_source": {
    "account_number": 411,
    "balance": 1172,
    "firstname": "Guzman",
    "lastname": "Whitfield",
    "age": 22,
    "gender": "M",
    "address": "181 Perry Terrace",
    "employer": "Springbee",
    "email": "guzmanwhitfield@springbee.com",
    "city": "Balm",
    "state": "IN"
    },
    "sort": [
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "159",
    "_score": null,
    "_source": {
    "account_number": 159,
    "balance": 1696,
    "firstname": "Alvarez",
    "lastname": "Mack",
    "age": 22,
    "gender": "F",
    "address": "897 Manor Court",
    "employer": "Snorus",
    "email": "alvarezmack@snorus.com",
    "city": "Rosedale",
    "state": "CA"
    },
    "sort": [
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "220",
    "_score": null,
    "_source": {
    "account_number": 220,
    "balance": 3086,
    "firstname": "Tania",
    "lastname": "Middleton",
    "age": 22,
    "gender": "F",
    "address": "541 Gunther Place",
    "employer": "Zerology",
    "email": "taniamiddleton@zerology.com",
    "city": "Linwood",
    "state": "IN"
    },
    "sort": [
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "350",
    "_score": null,
    "_source": {
    "account_number": 350,
    "balance": 4267,
    "firstname": "Wyatt",
    "lastname": "Wise",
    "age": 22,
    "gender": "F",
    "address": "896 Bleecker Street",
    "employer": "Rockyard",
    "email": "wyattwise@rockyard.com",
    "city": "Joes",
    "state": "MS"
    },
    "sort": [
    ]
    }
    ]
    }
    }
    }
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "749",
    "_score": null,
    "_source": {
    "account_number": 749,
    "balance": 1249,
    "firstname": "Rush",
    "lastname": "Boyle",
    "age": 36,
    "gender": "M",
    "address": "310 Argyle Road",
    "employer": "Sportan",
    "email": "rushboyle@sportan.com",
    "city": "Brady",
    "state": "WA"
    },
    "fields": {
    "age": [
    ]
    },
    "sort": [
    ],
    "inner_hits": {
    "details": {
    "hits": {
    "total": 52,
    "max_score": null,
    "hits": [
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "749",
    "_score": null,
    "_source": {
    "account_number": 749,
    "balance": 1249,
    "firstname": "Rush",
    "lastname": "Boyle",
    "age": 36,
    "gender": "M",
    "address": "310 Argyle Road",
    "employer": "Sportan",
    "email": "rushboyle@sportan.com",
    "city": "Brady",
    "state": "WA"
    },
    "sort": [
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "427",
    "_score": null,
    "_source": {
    "account_number": 427,
    "balance": 1463,
    "firstname": "Rebekah",
    "lastname": "Garrison",
    "age": 36,
    "gender": "F",
    "address": "837 Hampton Avenue",
    "employer": "Niquent",
    "email": "rebekahgarrison@niquent.com",
    "city": "Zarephath",
    "state": "NY"
    },
    "sort": [
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "782",
    "_score": null,
    "_source": {
    "account_number": 782,
    "balance": 3960,
    "firstname": "Maldonado",
    "lastname": "Craig",
    "age": 36,
    "gender": "F",
    "address": "345 Myrtle Avenue",
    "employer": "Zilencio",
    "email": "maldonadocraig@zilencio.com",
    "city": "Yukon",
    "state": "ID"
    },
    "sort": [
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "6",
    "_score": null,
    "_source": {
    "account_number": 6,
    "balance": 5686,
    "firstname": "Hattie",
    "lastname": "Bond",
    "age": 36,
    "gender": "M",
    "address": "671 Bristol Street",
    "employer": "Netagy",
    "email": "hattiebond@netagy.com",
    "city": "Dante",
    "state": "TN"
    },
    "sort": [
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "170",
    "_score": null,
    "_source": {
    "account_number": 170,
    "balance": 6025,
    "firstname": "Mann",
    "lastname": "Madden",
    "age": 36,
    "gender": "F",
    "address": "161 Radde Place",
    "employer": "Farmex",
    "email": "mannmadden@farmex.com",
    "city": "Thermal",
    "state": "LA"
    },
    "sort": [
    ]
    }
    ]
    }
    }
    }
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "315",
    "_score": null,
    "_source": {
    "account_number": 315,
    "balance": 1314,
    "firstname": "Clare",
    "lastname": "Morrow",
    "age": 33,
    "gender": "F",
    "address": "728 Madeline Court",
    "employer": "Gaptec",
    "email": "claremorrow@gaptec.com",
    "city": "Mapletown",
    "state": "PA"
    },
    "fields": {
    "age": [
    ]
    },
    "sort": [
    ],
    "inner_hits": {
    "details": {
    "hits": {
    "total": 50,
    "max_score": null,
    "hits": [
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "315",
    "_score": null,
    "_source": {
    "account_number": 315,
    "balance": 1314,
    "firstname": "Clare",
    "lastname": "Morrow",
    "age": 33,
    "gender": "F",
    "address": "728 Madeline Court",
    "employer": "Gaptec",
    "email": "claremorrow@gaptec.com",
    "city": "Mapletown",
    "state": "PA"
    },
    "sort": [
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "118",
    "_score": null,
    "_source": {
    "account_number": 118,
    "balance": 2223,
    "firstname": "Ballard",
    "lastname": "Vasquez",
    "age": 33,
    "gender": "F",
    "address": "101 Bush Street",
    "employer": "Intergeek",
    "email": "ballardvasquez@intergeek.com",
    "city": "Century",
    "state": "MN"
    },
    "sort": [
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "786",
    "_score": null,
    "_source": {
    "account_number": 786,
    "balance": 3024,
    "firstname": "Rene",
    "lastname": "Vang",
    "age": 33,
    "gender": "M",
    "address": "506 Randolph Street",
    "employer": "Isopop",
    "email": "renevang@isopop.com",
    "city": "Vienna",
    "state": "NJ"
    },
    "sort": [
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "932",
    "_score": null,
    "_source": {
    "account_number": 932,
    "balance": 3111,
    "firstname": "Summer",
    "lastname": "Porter",
    "age": 33,
    "gender": "F",
    "address": "949 Grand Avenue",
    "employer": "Multiflex",
    "email": "summerporter@multiflex.com",
    "city": "Spokane",
    "state": "OK"
    },
    "sort": [
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "587",
    "_score": null,
    "_source": {
    "account_number": 587,
    "balance": 3468,
    "firstname": "Carly",
    "lastname": "Johns",
    "age": 33,
    "gender": "M",
    "address": "390 Noll Street",
    "employer": "Gallaxia",
    "email": "carlyjohns@gallaxia.com",
    "city": "Emison",
    "state": "DC"
    },
    "sort": [
    ]
    }
    ]
    }
    }
    }
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "348",
    "_score": null,
    "_source": {
    "account_number": 348,
    "balance": 1360,
    "firstname": "Karina",
    "lastname": "Russell",
    "age": 37,
    "gender": "M",
    "address": "797 Moffat Street",
    "employer": "Limozen",
    "email": "karinarussell@limozen.com",
    "city": "Riegelwood",
    "state": "RI"
    },
    "fields": {
    "age": [
    ]
    },
    "sort": [
    ],
    "inner_hits": {
    "details": {
    "hits": {
    "total": 42,
    "max_score": null,
    "hits": [
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "348",
    "_score": null,
    "_source": {
    "account_number": 348,
    "balance": 1360,
    "firstname": "Karina",
    "lastname": "Russell",
    "age": 37,
    "gender": "M",
    "address": "797 Moffat Street",
    "employer": "Limozen",
    "email": "karinarussell@limozen.com",
    "city": "Riegelwood",
    "state": "RI"
    },
    "sort": [
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "663",
    "_score": null,
    "_source": {
    "account_number": 663,
    "balance": 2456,
    "firstname": "Rollins",
    "lastname": "Richards",
    "age": 37,
    "gender": "M",
    "address": "129 Sullivan Place",
    "employer": "Geostele",
    "email": "rollinsrichards@geostele.com",
    "city": "Morgandale",
    "state": "FL"
    },
    "sort": [
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "699",
    "_score": null,
    "_source": {
    "account_number": 699,
    "balance": 4156,
    "firstname": "Gallagher",
    "lastname": "Marshall",
    "age": 37,
    "gender": "F",
    "address": "648 Clifford Place",
    "employer": "Exiand",
    "email": "gallaghermarshall@exiand.com",
    "city": "Belfair",
    "state": "KY"
    },
    "sort": [
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "161",
    "_score": null,
    "_source": {
    "account_number": 161,
    "balance": 4659,
    "firstname": "Doreen",
    "lastname": "Randall",
    "age": 37,
    "gender": "F",
    "address": "178 Court Street",
    "employer": "Calcula",
    "email": "doreenrandall@calcula.com",
    "city": "Belmont",
    "state": "TX"
    },
    "sort": [
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "258",
    "_score": null,
    "_source": {
    "account_number": 258,
    "balance": 5712,
    "firstname": "Lindsey",
    "lastname": "Hawkins",
    "age": 37,
    "gender": "M",
    "address": "706 Frost Street",
    "employer": "Enormo",
    "email": "lindseyhawkins@enormo.com",
    "city": "Gardners",
    "state": "AK"
    },
    "sort": [
    ]
    }
    ]
    }
    }
    }
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "490",
    "_score": null,
    "_source": {
    "account_number": 490,
    "balance": 1447,
    "firstname": "Strong",
    "lastname": "Hendrix",
    "age": 26,
    "gender": "F",
    "address": "134 Beach Place",
    "employer": "Duoflex",
    "email": "stronghendrix@duoflex.com",
    "city": "Allentown",
    "state": "ND"
    },
    "fields": {
    "age": [
    ]
    },
    "sort": [
    ],
    "inner_hits": {
    "details": {
    "hits": {
    "total": 59,
    "max_score": null,
    "hits": [
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "490",
    "_score": null,
    "_source": {
    "account_number": 490,
    "balance": 1447,
    "firstname": "Strong",
    "lastname": "Hendrix",
    "age": 26,
    "gender": "F",
    "address": "134 Beach Place",
    "employer": "Duoflex",
    "email": "stronghendrix@duoflex.com",
    "city": "Allentown",
    "state": "ND"
    },
    "sort": [
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "280",
    "_score": null,
    "_source": {
    "account_number": 280,
    "balance": 3380,
    "firstname": "Vilma",
    "lastname": "Shields",
    "age": 26,
    "gender": "F",
    "address": "133 Berriman Street",
    "employer": "Applidec",
    "email": "vilmashields@applidec.com",
    "city": "Adamstown",
    "state": "ME"
    },
    "sort": [
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "596",
    "_score": null,
    "_source": {
    "account_number": 596,
    "balance": 4063,
    "firstname": "Letitia",
    "lastname": "Walker",
    "age": 26,
    "gender": "F",
    "address": "963 Vanderveer Place",
    "employer": "Zizzle",
    "email": "letitiawalker@zizzle.com",
    "city": "Rossmore",
    "state": "ID"
    },
    "sort": [
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "780",
    "_score": null,
    "_source": {
    "account_number": 780,
    "balance": 4682,
    "firstname": "Maryanne",
    "lastname": "Hendricks",
    "age": 26,
    "gender": "F",
    "address": "709 Wolcott Street",
    "employer": "Sarasonic",
    "email": "maryannehendricks@sarasonic.com",
    "city": "Santel",
    "state": "NH"
    },
    "sort": [
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "405",
    "_score": null,
    "_source": {
    "account_number": 405,
    "balance": 5679,
    "firstname": "Strickland",
    "lastname": "Fuller",
    "age": 26,
    "gender": "M",
    "address": "990 Concord Street",
    "employer": "Digique",
    "email": "stricklandfuller@digique.com",
    "city": "Southmont",
    "state": "NV"
    },
    "sort": [
    ]
    }
    ]
    }
    }
    }
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "174",
    "_score": null,
    "_source": {
    "account_number": 174,
    "balance": 1464,
    "firstname": "Gamble",
    "lastname": "Pierce",
    "age": 23,
    "gender": "F",
    "address": "650 Eagle Street",
    "employer": "Matrixity",
    "email": "gamblepierce@matrixity.com",
    "city": "Abiquiu",
    "state": "OR"
    },
    "fields": {
    "age": [
    ]
    },
    "sort": [
    ],
    "inner_hits": {
    "details": {
    "hits": {
    "total": 42,
    "max_score": null,
    "hits": [
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "174",
    "_score": null,
    "_source": {
    "account_number": 174,
    "balance": 1464,
    "firstname": "Gamble",
    "lastname": "Pierce",
    "age": 23,
    "gender": "F",
    "address": "650 Eagle Street",
    "employer": "Matrixity",
    "email": "gamblepierce@matrixity.com",
    "city": "Abiquiu",
    "state": "OR"
    },
    "sort": [
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "110",
    "_score": null,
    "_source": {
    "account_number": 110,
    "balance": 4850,
    "firstname": "Daphne",
    "lastname": "Byrd",
    "age": 23,
    "gender": "F",
    "address": "239 Conover Street",
    "employer": "Freakin",
    "email": "daphnebyrd@freakin.com",
    "city": "Taft",
    "state": "MN"
    },
    "sort": [
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "900",
    "_score": null,
    "_source": {
    "account_number": 900,
    "balance": 6124,
    "firstname": "Gonzalez",
    "lastname": "Watson",
    "age": 23,
    "gender": "M",
    "address": "624 Sullivan Street",
    "employer": "Marvane",
    "email": "gonzalezwatson@marvane.com",
    "city": "Wikieup",
    "state": "IL"
    },
    "sort": [
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "443",
    "_score": null,
    "_source": {
    "account_number": 443,
    "balance": 7588,
    "firstname": "Huff",
    "lastname": "Thomas",
    "age": 23,
    "gender": "M",
    "address": "538 Erskine Loop",
    "employer": "Accufarm",
    "email": "huffthomas@accufarm.com",
    "city": "Corinne",
    "state": "AL"
    },
    "sort": [
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "643",
    "_score": null,
    "_source": {
    "account_number": 643,
    "balance": 8057,
    "firstname": "Hendricks",
    "lastname": "Stokes",
    "age": 23,
    "gender": "F",
    "address": "142 Barbey Street",
    "employer": "Remotion",
    "email": "hendricksstokes@remotion.com",
    "city": "Lewis",
    "state": "MA"
    },
    "sort": [
    ]
    }
    ]
    }
    }
    }
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "111",
    "_score": null,
    "_source": {
    "account_number": 111,
    "balance": 1481,
    "firstname": "Traci",
    "lastname": "Allison",
    "age": 35,
    "gender": "M",
    "address": "922 Bryant Street",
    "employer": "Enjola",
    "email": "traciallison@enjola.com",
    "city": "Robinette",
    "state": "OR"
    },
    "fields": {
    "age": [
    ]
    },
    "sort": [
    ],
    "inner_hits": {
    "details": {
    "hits": {
    "total": 52,
    "max_score": null,
    "hits": [
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "111",
    "_score": null,
    "_source": {
    "account_number": 111,
    "balance": 1481,
    "firstname": "Traci",
    "lastname": "Allison",
    "age": 35,
    "gender": "M",
    "address": "922 Bryant Street",
    "employer": "Enjola",
    "email": "traciallison@enjola.com",
    "city": "Robinette",
    "state": "OR"
    },
    "sort": [
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "417",
    "_score": null,
    "_source": {
    "account_number": 417,
    "balance": 1788,
    "firstname": "Wheeler",
    "lastname": "Ayers",
    "age": 35,
    "gender": "F",
    "address": "677 Hope Street",
    "employer": "Fortean",
    "email": "wheelerayers@fortean.com",
    "city": "Ironton",
    "state": "PA"
    },
    "sort": [
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "984",
    "_score": null,
    "_source": {
    "account_number": 984,
    "balance": 1904,
    "firstname": "Viola",
    "lastname": "Crawford",
    "age": 35,
    "gender": "F",
    "address": "354 Linwood Street",
    "employer": "Ginkle",
    "email": "violacrawford@ginkle.com",
    "city": "Witmer",
    "state": "AR"
    },
    "sort": [
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "527",
    "_score": null,
    "_source": {
    "account_number": 527,
    "balance": 2028,
    "firstname": "Carver",
    "lastname": "Peters",
    "age": 35,
    "gender": "M",
    "address": "816 Victor Road",
    "employer": "Housedown",
    "email": "carverpeters@housedown.com",
    "city": "Nadine",
    "state": "MD"
    },
    "sort": [
    ]
    },
    {
    "_index": "bank",
    "_type": "_doc",
    "_id": "266",
    "_score": null,
    "_source": {
    "account_number": 266,
    "balance": 2777,
    "firstname": "Monique",
    "lastname": "Conner",
    "age": 35,
    "gender": "F",
    "address": "489 Metrotech Courtr",
    "employer": "Flotonic",
    "email": "moniqueconner@flotonic.com",
    "city": "Retsof",
    "state": "MD"
    },
    "sort": [
    ]
    }
    ]
    }
    }
    }
    }
    ]
    }
    }
    在inner_hits 中返回多个角度的组内topN


    GET /twitter/_search
    {
    "query": {
    "match": {
    "message": "elasticsearch"
    }
    },
    "collapse" : {
    "field" : "user",
    "inner_hits": [
    {
    "name": "most_liked",
    "size": 3,
    "sort": ["likes"]
    },
    {
    "name": "most_recent",
    "size": 3,
    "sort": [{ "date": "asc" }]
    }
    ]
    },
    "sort": ["likes"]
    }
     说明:

    most_liked:最像

    most_recent:最近一段时间的

     6.3.1 分页

     from and size


    GET /_search
    {
    "from" : 0, "size" : 10,
    "query" : {
    "term" : { "user" : "kimchy" }
    }
    }
    注意:搜索请求耗用的堆内存和时间与 from + size 大小成正比。分页越深耗用越大,为了不因分页导致OOM或严重影响性能,ES中规定from + size 不能大于索引setting参数 index.max_result_window 的值,默认值为 10,000。

    需要深度分页, 不受index.max_result_window 限制,怎么办? 

    Search after  在指定文档后取文档, 可用于深度分页

     首次查询第一页


    GET twitter/_search
    {
    "size": 10,
    "query": {
    "match" : {
    "title" : "elasticsearch"
    }
    },
    "sort": [
    {"date": "asc"},
    {"_id": "desc"}
    ]
    }
    后续页的查询


    GET twitter/_search
    {
    "size": 10,
    "query": {
    "match" : {
    "title" : "elasticsearch"
    }
    },
    "search_after": [1463538857, "654323"],
    "sort": [
    {"date": "asc"},
    {"_id": "desc"}
    ]
    }
    注意:使用search_after,要求查询必须指定排序,并且这个排序组合值每个文档唯一(最好排序中包含_id字段)。 search_after的值用的就是这个排序值。 用search_after时 from 只能为0、-1。

    6.3.2 高亮

    准备数据:

    PUT /hl_test/_doc/1
    {
    "title": "lucene solr and elasticsearch",
    "content": "lucene solr and elasticsearch for search"
    }
    查询高亮数据


    GET /hl_test/_search
    {
    "query": {
    "match": {
    "title": "lucene"
    }
    },
    "highlight": {
    "fields": {
    "title": {},
    "content": {}
    }
    }
    }
    查询结果:


    {
    "took": 113,
    "timed_out": false,
    "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
    },
    "hits": {
    "total": 1,
    "max_score": 0.2876821,
    "hits": [
    {
    "_index": "hl_test",
    "_type": "_doc",
    "_id": "1",
    "_score": 0.2876821,
    "_source": {
    "title": "lucene solr and elasticsearch",
    "content": "lucene solr and elasticsearch for search"
    },
    "highlight": {
    "title": [
    "<em>lucene</em> solr and elasticsearch"
    ]
    }
    }
    ]
    }
    }
    多字段高亮


    GET /hl_test/_search
    {
    "query": {
    "match": {
    "title": "lucene"
    }
    },
    "highlight": {
    "require_field_match": false,
    "fields": {
    "title": {},
    "content": {}
    }
    }
    }
    查询结果:


    {
    "took": 5,
    "timed_out": false,
    "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
    },
    "hits": {
    "total": 1,
    "max_score": 0.2876821,
    "hits": [
    {
    "_index": "hl_test",
    "_type": "_doc",
    "_id": "1",
    "_score": 0.2876821,
    "_source": {
    "title": "lucene solr and elasticsearch",
    "content": "lucene solr and elasticsearch for search"
    },
    "highlight": {
    "title": [
    "<em>lucene</em> solr and elasticsearch"
    ],
    "content": [
    "<em>lucene</em> solr and elasticsearch for search"
    ]
    }
    }
    ]
    }
    }
    说明:

    高亮结果在返回的每个文档中以hightlight节点给出

    指定高亮标签


    GET /hl_test/_search
    {
    "query": {
    "match": {
    "title": "lucene"
    }
    },
    "highlight": {
    "require_field_match": false,
    "fields": {
    "title": {
    "pre_tags":["<strong>"],
    "post_tags": ["</strong>"]
    },
    "content": {}
    }
    }
    }
    查询结果:


    {
    "took": 5,
    "timed_out": false,
    "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
    },
    "hits": {
    "total": 1,
    "max_score": 0.2876821,
    "hits": [
    {
    "_index": "hl_test",
    "_type": "_doc",
    "_id": "1",
    "_score": 0.2876821,
    "_source": {
    "title": "lucene solr and elasticsearch",
    "content": "lucene solr and elasticsearch for search"
    },
    "highlight": {
    "title": [
    "<strong>lucene</strong> solr and elasticsearch"
    ],
    "content": [
    "<em>lucene</em> solr and elasticsearch for search"
    ]
    }
    }
    ]
    }
    }
    高亮的详细设置请参考官网:https://www.elastic.co/guide/en/elasticsearch/reference/current/search-request-highlighting.html

    6.3.3 Profile  为了调试、优化

    对于执行缓慢的查询,我们很想知道它为什么慢,时间都耗在哪了,可以在查询上加入上 profile 来获得详细的执行步骤、耗时信息。


    GET /twitter/_search
    {
    "profile": true,
    "query" : {
    "match" : { "message" : "some number" }
    }
    }
    信息的说明请参考:

    https://www.elastic.co/guide/en/elasticsearch/reference/current/search-profile.html

    7.  count api 查询数量

    PUT /twitter/_doc/1?refresh
    {
    "user": "kimchy"
    }

    GET /twitter/_doc/_count?q=user:kimchy

    GET /twitter/_doc/_count
    {
    "query" : {
    "term" : { "user" : "kimchy" }
    }
    }
    结果说明:


    {
    "count" : 1,
    "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
    }
    }
    8. validate api  
    用来检查我们的查询是否正确,以及查看底层生成查询是怎样的

    GET twitter/_validate/query?q=user:foo
    8.1 校验查询


    GET twitter/_doc/_validate/query
    {
    "query": {
    "query_string": {
    "query": "post_date:foo",
    "lenient": false
    }
    }
    }
    查询结果:


    {
    "valid": true,
    "_shards": {
    "total": 1,
    "successful": 1,
    "failed": 0
    }
    }
    8.2 获得查询解释


    GET twitter/_doc/_validate/query?explain=true
    {
    "query": {
    "query_string": {
    "query": "post_date:foo",
    "lenient": false
    }
    }
    }
    查询结果


    {
    "valid": true,
    "_shards": {
    "total": 1,
    "successful": 1,
    "failed": 0
    },
    "explanations": [
    {
    "index": "twitter",
    "valid": true,
    "explanation": """+MatchNoDocsQuery("unmapped field [post_date]") #MatchNoDocsQuery("Type list does not contain the index type")"""
    }
    ]
    }
    8.3 用rewrite获得比explain 更详细的解释


    GET twitter/_doc/_validate/query?rewrite=true
    {
    "query": {
    "more_like_this": {
    "like": {
    "_id": "2"
    },
    "boost_terms": 1
    }
    }
    }
    查询结果:


    {
    "valid": true,
    "_shards": {
    "total": 1,
    "successful": 1,
    "failed": 0
    },
    "explanations": [
    {
    "index": "twitter",
    "valid": true,
    "explanation": """+(MatchNoDocsQuery("empty BooleanQuery") -ConstantScore(MatchNoDocsQuery("empty BooleanQuery"))) #MatchNoDocsQuery("Type list does not contain the index type")"""
    }
    ]
    }
    8.4 获得所有分片上的查询解释


    GET twitter/_doc/_validate/query?rewrite=true&all_shards=true
    {
    "query": {
    "match": {
    "user": {
    "query": "kimchy",
    "fuzziness": "auto"
    }
    }
    }
    }
    查询结果:


    {
    "valid": true,
    "_shards": {
    "total": 3,
    "successful": 3,
    "failed": 0
    },
    "explanations": [
    {
    "index": "twitter",
    "shard": 0,
    "valid": true,
    "explanation": """MatchNoDocsQuery("unmapped field [user]")"""
    },
    {
    "index": "twitter",
    "shard": 1,
    "valid": true,
    "explanation": """MatchNoDocsQuery("unmapped field [user]")"""
    },
    {
    "index": "twitter",
    "shard": 2,
    "valid": true,
    "explanation": """MatchNoDocsQuery("unmapped field [user]")"""
    }
    ]
    }
    官网链接:

    https://www.elastic.co/guide/en/elasticsearch/reference/current/search-validate.html

    9. Explain api  
    获得某个查询的评分解释,及某个文档是否被这个查询命中

    GET /twitter/_doc/0/_explain
    {
    "query" : {
    "match" : { "message" : "elasticsearch" }
    }
    }
    官网链接:

    https://www.elastic.co/guide/en/elasticsearch/reference/current/search-explain.html

    10. Search Shards API
    让我们可以了解可执行查询的索引分片节点情况

    GET /twitter/_search_shards
    查询结果:

    {
    "nodes": {
    "qkmtovyLRPWjXcfDTryNwA": {
    "name": "qkmtovy",
    "ephemeral_id": "sxgsvzsORraAnN7PIlMYpg",
    "transport_address": "127.0.0.1:9300",
    "attributes": {}
    }
    },
    "indices": {
    "twitter": {}
    },
    "shards": [
    [
    {
    "state": "STARTED",
    "primary": true,
    "node": "qkmtovyLRPWjXcfDTryNwA",
    "relocating_node": null,
    "shard": 0,
    "index": "twitter",
    "allocation_id": {
    "id": "3Yf6lOjyQja_v4yP_gL8qA"
    }
    }
    ],
    [
    {
    "state": "STARTED",
    "primary": true,
    "node": "qkmtovyLRPWjXcfDTryNwA",
    "relocating_node": null,
    "shard": 1,
    "index": "twitter",
    "allocation_id": {
    "id": "8S88pnUkSSy8kiCcwBgb9Q"
    }
    }
    ],
    [
    {
    "state": "STARTED",
    "primary": true,
    "node": "qkmtovyLRPWjXcfDTryNwA",
    "relocating_node": null,
    "shard": 2,
    "index": "twitter",
    "allocation_id": {
    "id": "_uIup55LQZKaltUfuh5aFA"
    }
    }
    ]
    ]
    }
    想知道指定routing值的查询将在哪些分片节点上执行

    GET /twitter/_search_shards?routing=foo,baz
    查询结果:


    {
    "nodes": {
    "qkmtovyLRPWjXcfDTryNwA": {
    "name": "qkmtovy",
    "ephemeral_id": "sxgsvzsORraAnN7PIlMYpg",
    "transport_address": "127.0.0.1:9300",
    "attributes": {}
    }
    },
    "indices": {
    "twitter": {}
    },
    "shards": [
    [
    {
    "state": "STARTED",
    "primary": true,
    "node": "qkmtovyLRPWjXcfDTryNwA",
    "relocating_node": null,
    "shard": 1,
    "index": "twitter",
    "allocation_id": {
    "id": "8S88pnUkSSy8kiCcwBgb9Q"
    }
    }
    ]
    ]
    }
    11. Search Template 查询模板
    注册一个模板


    POST _scripts/<templatename>
    {
    "script": {
    "lang": "mustache",
    "source": {
    "query": {
    "match": {
    "title": "{{query_string}}"
    }
    }
    }
    }
    }
    使用模板进行查询


    GET _search/template
    {
    "id": "<templateName>",
    "params": {
    "query_string": "search for these words"
    }
    }
    查询结果:


    {
    "took": 11,
    "timed_out": false,
    "_shards": {
    "total": 38,
    "successful": 38,
    "skipped": 0,
    "failed": 0
    },
    "hits": {
    "total": 0,
    "max_score": null,
    "hits": []
    }
    }
    详细了解请参考官网:

    https://www.elastic.co/guide/en/elasticsearch/reference/current/search-template.html

    二、Query DSL
     

    官网介绍链接:https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html

     Query DSL 介绍
     1. DSL是什么?
    Domain Specific Language:领域特定语言

    Elasticsearch基于JSON提供完整的查询DSL来定义查询。

    一个查询可由两部分字句构成:

    Leaf query clauses 叶子查询字句
    Leaf query clauses 在指定的字段上查询指定的值, 如:match, term or range queries. 叶子字句可以单独使用. 
    Compound query clauses 复合查询字句
    以逻辑方式组合多个叶子、复合查询为一个查询

     2. Query and filter context
     一个查询字句的行为取决于它是用在query context  还是 filter context 中 。

    Query context 查询上下文
    用在查询上下文中的字句回答“这个文档有多匹配这个查询?”。除了决定文档是否匹配,字句匹配的文档还会计算一个字句评分,来评定文档有多匹配。查询上下文由 query 元素表示。
    Filter context 过滤上下文
    过滤上下文由 filter 元素或 bool 中的 must not 表示。用在过滤上下文中的字句回答“这个文档是否匹配这个查询?”,不参与相关性评分。
    被频繁使用的过滤器将被ES自动缓存,来提高查询性能。

     示例:


    GET /_search
    {
    <!--查询 -->
    "query": {
    "bool": {
    "must": [
    { "match": { "title": "Search" }},
    { "match": { "content": "Elasticsearch" }}
    ],
    <!--过滤 -->
    "filter": [
    { "term": { "status": "published" }},
    { "range": { "publish_date": { "gte": "2015-01-01" }}}
    ]
    }
    }
    }
     说明:查询和过滤都是对所有文档进行查询,最后两个结果取交集

     提示:在查询上下文中使用查询子句来表示影响匹配文档得分的条件,并在过滤上下文中使用所有其他查询子句。

     查询分类介绍
     

    1. Match all query 查询所有
    GET /_search
    {
    "query": {
    "match_all": {}
    }
    }
     相反,什么都不查

    GET /_search
    {
    "query": {
    "match_none": {}
    }
    }
     2. Full text querys
    全文查询,用于对分词的字段进行搜索。会用查询字段的分词器对查询的文本进行分词生成查询。可用于短语查询、模糊查询、前缀查询、临近查询等查询场景

     官网链接:

    https://www.elastic.co/guide/en/elasticsearch/reference/current/full-text-queries.html

     3. match query
    全文查询的标准查询,它可以对一个字段进行模糊、短语查询。 match queries 接收 text/numerics/dates, 对它们进行分词分析, 再组织成一个boolean查询。可通过operator 指定bool组合操作(or、and 默认是 or ), 以及minimum_should_match 指定至少需多少个should(or)字句需满足。还可用ananlyzer指定查询用的特殊分析器。


    GET /_search
    {
    "query": {
    "match" : {
    "message" : "this is a test"
    }
    }
    }
     说明:message是字段名

     官网链接:https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-match-query.html

     示例:

    构造索引和数据:


    PUT /ftq/_doc/1
    {
    "title": "lucene solr and elasticsearch",
    "content": "lucene solr and elasticsearch for search"
    }

    PUT /ftq/_doc/2
    {
    "title": "java spring boot",
    "content": "lucene is writerd by java"
    }
     执行查询1


    GET ftq/_doc/_validate/query?rewrite=true
    {
    "query": {
    "match": {
    "title": "lucene java"
    }
    }
    }
     查询结果1:


    {
    "valid": true,
    "_shards": {
    "total": 1,
    "successful": 1,
    "failed": 0
    },
    "explanations": [
    {
    "index": "ftq",
    "valid": true,
    "explanation": "title:lucene title:java"
    }
    ]
    }
     执行查询2:


    GET ftq/_search
    {
    "query": {
    "match": {
    "title": "lucene java"
    }
    }
    }
     查询结果2:


    {
    "took": 6,
    "timed_out": false,
    "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
    },
    "hits": {
    "total": 2,
    "max_score": 0.2876821,
    "hits": [
    {
    "_index": "ftq",
    "_type": "_doc",
    "_id": "2",
    "_score": 0.2876821,
    "_source": {
    "title": "java spring boot",
    "content": "lucene is writerd by java"
    }
    },
    {
    "_index": "ftq",
    "_type": "_doc",
    "_id": "1",
    "_score": 0.2876821,
    "_source": {
    "title": "lucene solr and elasticsearch",
    "content": "lucene solr and elasticsearch for search"
    }
    }
    ]
    }
    }
     执行查询3:指定操作符


    GET ftq/_search
    {
    "query": {
    "match": {
    "title": {
    "query": "lucene java",
    "operator": "and"
    }
    }
    }
    }
     查询结果3:


    {
    "took": 4,
    "timed_out": false,
    "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
    },
    "hits": {
    "total": 0,
    "max_score": null,
    "hits": []
    }
    }
    模糊查询,最大编辑数为2


    GET ftq/_search
    {
    "query": {
    "match": {
    "title": {
    "query": "ucen elatic",
    "fuzziness": 2
    }
    }
    }
    }
    模糊查询结果:


    {
    "took": 280,
    "timed_out": false,
    "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
    },
    "hits": {
    "total": 1,
    "max_score": 0.14384104,
    "hits": [
    {
    "_index": "ftq",
    "_type": "_doc",
    "_id": "1",
    "_score": 0.14384104,
    "_source": {
    "title": "lucene solr and elasticsearch",
    "content": "lucene solr and elasticsearch for search"
    }
    }
    ]
    }
    }
    指定最少需满足两个词匹配


    GET ftq/_search
    {
    "query": {
    "match": {
    "content": {
    "query": "ucen elatic java",
    "fuzziness": 2,
    "minimum_should_match": 2
    }
    }
    }
    }
     查询结果:


    {
    "took": 19,
    "timed_out": false,
    "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
    },
    "hits": {
    "total": 1,
    "max_score": 0.43152314,
    "hits": [
    {
    "_index": "ftq",
    "_type": "_doc",
    "_id": "2",
    "_score": 0.43152314,
    "_source": {
    "title": "java spring boot",
    "content": "lucene is writerd by java"
    }
    }
    ]
    }
    }
     可用max_expansions 指定模糊匹配的最大词项数,默认是50。比如:反向索引中有 100 个词项与 ucen 模糊匹配,只选用前50 个。

     4. match  phrase  query
    match_phrase 查询用来对一个字段进行短语查询,可以指定 analyzer、slop移动因子。

     对字段进行短语查询1:

    GET ftq/_search
    {
    "query": {
    "match_phrase": {
    "title": "lucene solr"
    }
    }
    }
     结果1:


    {
    "took": 3,
    "timed_out": false,
    "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
    },
    "hits": {
    "total": 1,
    "max_score": 0.5753642,
    "hits": [
    {
    "_index": "ftq",
    "_type": "_doc",
    "_id": "1",
    "_score": 0.5753642,
    "_source": {
    "title": "lucene solr and elasticsearch",
    "content": "lucene solr and elasticsearch for search"
    }
    }
    ]
    }
    }
     对字段进行短语查询2:

    GET ftq/_search
    {
    "query": {
    "match_phrase": {
    "title": "lucene elasticsearch"
    }
    }
    }
     

    结果2:


    {
    "took": 3,
    "timed_out": false,
    "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
    },
    "hits": {
    "total": 0,
    "max_score": null,
    "hits": []
    }
    }
    对查询指定移动因子:

    GET ftq/_search
    {
    "query": {
    "match_phrase": {
    "title": {
    "query": "lucene elasticsearch",
    "slop": 2
    }
    }
    }
    }
     查询结果:


    {
    "took": 2174,
    "timed_out": false,
    "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
    },
    "hits": {
    "total": 1,
    "max_score": 0.27517417,
    "hits": [
    {
    "_index": "ftq",
    "_type": "_doc",
    "_id": "1",
    "_score": 0.27517417,
    "_source": {
    "title": "lucene solr and elasticsearch",
    "content": "lucene solr and elasticsearch for search"
    }
    }
    ]
    }
    }
     5. match  phrase  prefix query
    match_phrase_prefix 在 match_phrase 的基础上支持对短语的最后一个词进行前缀匹配

    GET /_search
    {
    "query": {
    "match_phrase_prefix" : {
    "message" : "quick brown f"
    }
    }
    }
     指定前缀匹配选用的最大词项数量


    GET /_search
    {
    "query": {
    "match_phrase_prefix" : {
    "message" : {
    "query" : "quick brown f",
    "max_expansions" : 10
    }
    }
    }
    }
     6. Multi match query
    如果你需要在多个字段上进行文本搜索,可用multi_match 。 multi_match在 match的基础上支持对多个字段进行文本查询。

    查询1:


    GET ftq/_search
    {
    "query": {
    "multi_match" : {
    "query": "lucene java",
    "fields": [ "title", "content" ]
    }
    }
    }
    结果1:


    {
    "took": 1973,
    "timed_out": false,
    "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
    },
    "hits": {
    "total": 2,
    "max_score": 0.5753642,
    "hits": [
    {
    "_index": "ftq",
    "_type": "_doc",
    "_id": "2",
    "_score": 0.5753642,
    "_source": {
    "title": "java spring boot",
    "content": "lucene is writerd by java"
    }
    },
    {
    "_index": "ftq",
    "_type": "_doc",
    "_id": "1",
    "_score": 0.2876821,
    "_source": {
    "title": "lucene solr and elasticsearch",
    "content": "lucene solr and elasticsearch for search"
    }
    }
    ]
    }
    }
    查询2:字段通配符查询


    GET ftq/_search
    {
    "query": {
    "multi_match" : {
    "query": "lucene java",
    "fields": [ "title", "cont*" ]
    }
    }
    }
    结果2:


    {
    "took": 5,
    "timed_out": false,
    "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
    },
    "hits": {
    "total": 2,
    "max_score": 0.5753642,
    "hits": [
    {
    "_index": "ftq",
    "_type": "_doc",
    "_id": "2",
    "_score": 0.5753642,
    "_source": {
    "title": "java spring boot",
    "content": "lucene is writerd by java"
    }
    },
    {
    "_index": "ftq",
    "_type": "_doc",
    "_id": "1",
    "_score": 0.2876821,
    "_source": {
    "title": "lucene solr and elasticsearch",
    "content": "lucene solr and elasticsearch for search"
    }
    }
    ]
    }
    }
    查询3:给字段的相关性评分加权重

    GET ftq/_search?explain=true
    {
    "query": {
    "multi_match" : {
    "query": "lucene elastic",
    "fields": [ "title^5", "content" ]
    }
    }
    }
    结果3:

    {
    "took": 6,
    "timed_out": false,
    "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
    },
    "hits": {
    "total": 2,
    "max_score": 1.4384104,
    "hits": [
    {
    "_shard": "[ftq][3]",
    "_node": "qkmtovyLRPWjXcfDTryNwA",
    "_index": "ftq",
    "_type": "_doc",
    "_id": "1",
    "_score": 1.4384104,
    "_source": {
    "title": "lucene solr and elasticsearch",
    "content": "lucene solr and elasticsearch for search"
    },
    "_explanation": {
    "value": 1.4384104,
    "description": "max of:",
    "details": [
    {
    "value": 1.4384104,
    "description": "sum of:",
    "details": [
    {
    "value": 1.4384104,
    "description": "weight(title:lucene in 0) [PerFieldSimilarity], result of:",
    "details": [
    {
    "value": 1.4384104,
    "description": "score(doc=0,freq=1.0 = termFreq=1.0 ), product of:",
    "details": [
    {
    "value": 5,
    "description": "boost",
    "details": []
    },
    {
    "value": 0.2876821,
    "description": "idf, computed as log(1 + (docCount - docFreq + 0.5) / (docFreq + 0.5)) from:",
    "details": [
    {
    "value": 1,
    "description": "docFreq",
    "details": []
    },
    {
    "value": 1,
    "description": "docCount",
    "details": []
    }
    ]
    },
    {
    "value": 1,
    "description": "tfNorm, computed as (freq * (k1 + 1)) / (freq + k1 * (1 - b + b * fieldLength / avgFieldLength)) from:",
    "details": [
    {
    "value": 1,
    "description": "termFreq=1.0",
    "details": []
    },
    {
    "value": 1.2,
    "description": "parameter k1",
    "details": []
    },
    {
    "value": 0.75,
    "description": "parameter b",
    "details": []
    },
    {
    "value": 4,
    "description": "avgFieldLength",
    "details": []
    },
    {
    "value": 4,
    "description": "fieldLength",
    "details": []
    }
    ]
    }
    ]
    }
    ]
    }
    ]
    },
    {
    "value": 0.2876821,
    "description": "sum of:",
    "details": [
    {
    "value": 0.2876821,
    "description": "weight(content:lucene in 0) [PerFieldSimilarity], result of:",
    "details": [
    {
    "value": 0.2876821,
    "description": "score(doc=0,freq=1.0 = termFreq=1.0 ), product of:",
    "details": [
    {
    "value": 0.2876821,
    "description": "idf, computed as log(1 + (docCount - docFreq + 0.5) / (docFreq + 0.5)) from:",
    "details": [
    {
    "value": 1,
    "description": "docFreq",
    "details": []
    },
    {
    "value": 1,
    "description": "docCount",
    "details": []
    }
    ]
    },
    {
    "value": 1,
    "description": "tfNorm, computed as (freq * (k1 + 1)) / (freq + k1 * (1 - b + b * fieldLength / avgFieldLength)) from:",
    "details": [
    {
    "value": 1,
    "description": "termFreq=1.0",
    "details": []
    },
    {
    "value": 1.2,
    "description": "parameter k1",
    "details": []
    },
    {
    "value": 0.75,
    "description": "parameter b",
    "details": []
    },
    {
    "value": 6,
    "description": "avgFieldLength",
    "details": []
    },
    {
    "value": 6,
    "description": "fieldLength",
    "details": []
    }
    ]
    }
    ]
    }
    ]
    }
    ]
    }
    ]
    }
    },
    {
    "_shard": "[ftq][2]",
    "_node": "qkmtovyLRPWjXcfDTryNwA",
    "_index": "ftq",
    "_type": "_doc",
    "_id": "2",
    "_score": 0.2876821,
    "_source": {
    "title": "java spring boot",
    "content": "lucene is writerd by java"
    },
    "_explanation": {
    "value": 0.2876821,
    "description": "max of:",
    "details": [
    {
    "value": 0.2876821,
    "description": "sum of:",
    "details": [
    {
    "value": 0.2876821,
    "description": "weight(content:lucene in 0) [PerFieldSimilarity], result of:",
    "details": [
    {
    "value": 0.2876821,
    "description": "score(doc=0,freq=1.0 = termFreq=1.0 ), product of:",
    "details": [
    {
    "value": 0.2876821,
    "description": "idf, computed as log(1 + (docCount - docFreq + 0.5) / (docFreq + 0.5)) from:",
    "details": [
    {
    "value": 1,
    "description": "docFreq",
    "details": []
    },
    {
    "value": 1,
    "description": "docCount",
    "details": []
    }
    ]
    },
    {
    "value": 1,
    "description": "tfNorm, computed as (freq * (k1 + 1)) / (freq + k1 * (1 - b + b * fieldLength / avgFieldLength)) from:",
    "details": [
    {
    "value": 1,
    "description": "termFreq=1.0",
    "details": []
    },
    {
    "value": 1.2,
    "description": "parameter k1",
    "details": []
    },
    {
    "value": 0.75,
    "description": "parameter b",
    "details": []
    },
    {
    "value": 5,
    "description": "avgFieldLength",
    "details": []
    },
    {
    "value": 5,
    "description": "fieldLength",
    "details": []
    }
    ]
    }
    ]
    }
    ]
    }
    ]
    }
    ]
    }
    }
    ]
    }
    }
    7. Common terms query
    common 常用词查询

    问1、什么是停用词?索引时做停用词处理的目的是什么?

        不再使用的词,做停用词处理的目的是提高索引的效率,去掉不需要的索引操作,即停用词不需要索引
    问2、如果在索引时应用停用词处理,下面的两个查询会查询什么词项?
    the brown fox—— brown fox
    not happy——happy

    问3、索引时应用停用词处理对搜索精度是否有影响?如果不做停用词处理又会有什么影响?如何协调这两个问题?如何保证搜索的精确度又兼顾搜索性能?

    索引时应用停用词处理对搜索精度有影响,不做停用词处理又会影响索引的效率,要协调这两个问题就必须要使用tf-idf 相关性计算模型

    7.1 tf-idf 相关性计算模型简介

    tf:term frequency   词频 :指一个词在一篇文档中出现的频率。

    如“世界杯”在文档A中出现3次,那么可以定义“世界杯”在文档A中的词频为3。请问在一篇3000字的文章中出现“世界杯”3次和一篇150字的文章中出现3词,哪篇文章更是与“世界杯”有关的。也就是说,简单用出现次数作为频率不够准确。那就用占比来表示:

    问:tf值越大是否就一定说明这个词更相关?

     不是,出现太多了说明不重要

     说明:tf的计算不一定非是这样的,可以定义不同的计算方式。

    df:document frequency 词的文档频率 :指包含某个词的文档数(有多少文档中包含这个词)。 df越大的词越常见,哪些词会是高频词?

    问1:词的df值越大说明这个词在这个文档集中是越重要还是越不重要?

     越不重要

    问2:词t的tf高,在文档集中的重要性也高,是否说明文档与该词越相关?举例:整个文档集中只有3篇文档中有“世界杯”,文档A中就出现了“世界杯”好几次。 

     不能说明文档与该词越相关

    问3:如何用数值体现词t在文档集中的重要性?df可以吗?

     不可以

     idf:inverse document frequency   词的逆文档频率 :用来表示词在文档集中的重要性。文档总数/ df ,df越小,词越重要,这个值会很大,那就对它取个自然对数,将值映射到一个较小的取值范围。

    说明: +1 是为了避免除0(即词t在文档集中未出现的情况)

    tf-idf 相关性性计算模型:tf-idf t = tf t,d * idf t

     说明: tf-idf 相关性性计算模型的值为词频( tf t,d)乘以词的逆文档频率(idf t)

    7.2 Common terms query

    common 区分常用(高频)词查询让我们可以通过cutoff_frequency来指定一个分界文档频率值,将搜索文本中的词分为高频词和低频词,低频词的重要性高于高频词,先对低频词进行搜索并计算所有匹配文档相关性得分;然后再搜索和高频词匹配的文档,这会搜到很多文档,但只对和低频词重叠的文档进行相关性得分计算(这可保证搜索精确度,同时大大提高搜索性能),和低频词累加作为文档得分。实际执行的搜索是 必须包含低频词 + 或包含高频词。

    思考:这样处理下,如果用户输入的都是高频词如 “to be or not to be”结果会是怎样的?你希望是怎样的?

    优化:如果都是高频词,那就对这些词进行and 查询。
    进一步优化:让用户可以自己定对高频词做and/or 操作,自己定对低频词进行and/or 操作;或指定最少得多少个同时匹配

    示例1:

    GET /_search
    {
    "query": {
    "common": {
    "message": {
    "query": "this is bonsai cool",
    "cutoff_frequency": 0.001
    }
    }
    }
    }
     

    说明:

    cutoff_frequency : 值大于1表示文档数,0-1.0表示占比。 此处界定 文档频率大于 0.1%的词为高频词。

    示例2:

    GET /_search
    {
    "query": {
    "common": {
    "body": {
    "query": "nelly the elephant as a cartoon",
    "cutoff_frequency": 0.001,
    "low_freq_operator": "and"
    }
    }
    }
    }
     

    说明:low_freq_operator指定对低频词做与操作
    可用参数:minimum_should_match (high_freq, low_freq), low_freq_operator (default “or”) and high_freq_operator (default “or”)、 boost and analyzer

    示例3:

    GET /_search
    {
    "query": {
    "common": {
    "body": {
    "query": "nelly the elephant as a cartoon",
    "cutoff_frequency": 0.001,
    "minimum_should_match": 2
    }
    }
    }
    }
     

    示例4:

    GET /_search
    {
    "query": {
    "common": {
    "body": {
    "query": "nelly the elephant not as a cartoon",
    "cutoff_frequency": 0.001,
    "minimum_should_match": {
    "low_freq" : 2,
    "high_freq" : 3
    }
    }
    }
    }
    }
     

    示例5:

    8. Query string query
    query_string 查询,让我们可以直接用lucene查询语法写一个查询串进行查询,ES中接到请求后,通过查询解析器解析查询串生成对应的查询。使用它要求掌握lucene的查询语法。

     示例1:指定单个字段查询


    GET /_search
    {
    "query": {
    "query_string" : {
    "default_field" : "content",
    "query" : "this AND that OR thus"
    }
    }
    }
     示例2:指定多字段通配符查询


    GET /_search
    {
    "query": {
    "query_string" : {
    "fields" : ["content", "name.*^5"],
    "query" : "this AND that OR thus"
    }
    }
    }
     可与query同用的参数,如 default_field、fields,及query 串的语法请参考:

    https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-query-string-query.html

     9. 查询描述规则语法(查询解析语法)
    Term 词项:

    单个词项的表示: 电脑
    短语的表示: "联想笔记本电脑"

    Field 字段:

    字段名:
    示例: name:“联想笔记本电脑” AND type:电脑
    如果name是默认字段,则可写成: “联想笔记本电脑” AND type:电脑
    如果查询串是:type:电脑 计算机 手机
    注意:只有第一个是type的值,后两个则是使用默认字段。

     Term Modifiers 词项修饰符:

    10. Simple Query string query
    simple_query_string 查同 query_string 查询一样用lucene查询语法写查询串,较query_string不同的地方:更小的语法集;查询串有错误,它会忽略错误的部分,不抛出错误。更适合给用户使用。

     示例:

    GET /_search
    {
    "query": {
    "simple_query_string" : {
    "query": ""fried eggs" +(eggplant | potato) -frittata",
    "fields": ["title^5", "body"],
    "default_operator": "and"
    }
    }
    }
     

     语法请参考:

    https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-simple-query-string-query.html

     11. Term level querys
     

    官网链接:

    https://www.elastic.co/guide/en/elasticsearch/reference/current/term-level-queries.html

     11.1 Term query

    term 查询用于查询指定字段包含某个词项的文档。

     示例1:

    POST _search
    {
    "query": {
    "term" : { "user" : "Kimchy" }
    }
    }
     示例2:加权重

    GET _search
    {
    "query": {
    "bool": {
    "should": [
    {
    "term": {
    "status": {
    "value": "urgent",
    "boost": 2
    }
    }
    },
    {
    "term": {
    "status": "normal"
    }
    }
    ]
    }
    }
    }
     

     11.2 Terms query

     terms 查询用于查询指定字段包含某些词项的文档。

    GET /_search
    {
    "query": {
    "terms" : { "user" : ["kimchy", "elasticsearch"]}
    }
    }
    Terms 查询支持嵌套查询的方式来获得查询词项,相当于 in (select term from other)

    示例1:Terms query 嵌套查询示例

    PUT /users/_doc/2
    {
    "followers" : ["1", "3"]
    }

    PUT /tweets/_doc/1
    {
    "user" : "1"
    }

    GET /tweets/_search
    {
    "query": {
    "terms": {
    "user": {
    "index": "users",
    "type": "_doc",
    "id": "2",
    "path": "followers"
    }
    }
    }
    }
     

    查询结果:


    {
    "took": 14,
    "timed_out": false,
    "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
    },
    "hits": {
    "total": 1,
    "max_score": 1,
    "hits": [
    {
    "_index": "tweets",
    "_type": "_doc",
    "_id": "1",
    "_score": 1,
    "_source": {
    "user": "1"
    }
    }
    ]
    }
    }
    嵌套查询可用参数说明:

    11.3 range query

     范围查询示例1:


    GET _search
    {
    "query": {
    "range" : {
    "age" : {
    "gte" : 10,
    "lte" : 20,
    "boost" : 2.0
    }
    }
    }
    }
      范围查询示例2:

    GET _search
    {
    "query": {
    "range" : {
    "date" : {
    "gte" : "now-1d/d",
    "lt" : "now/d"
    }
    }
    }
    }
     

      范围查询示例3:

    GET _search
    {
    "query": {
    "range" : {
    "born" : {
    "gte": "01/01/2012",
    "lte": "2013",
    "format": "dd/MM/yyyy||yyyy"
    }
    }
    }
    }
     范围查询参数说明:

    范围查询时间舍入 ||说明:

    时间数学计算规则请参考:

    https://www.elastic.co/guide/en/elasticsearch/reference/current/common-options.html#date-math

    11.4 exists  query

    查询指定字段值不为空的文档。相当 SQL 中的 column is not null

    GET /_search
    {
    "query": {
    "exists" : { "field" : "user" }
    }
    }
    查询指定字段值为空的文档

    GET /_search
    {
    "query": {
    "bool": {
    "must_not": {
    "exists": {
    "field": "user"
    }
    }
    }
    }
    }
     

     11.5 prefix query 词项前缀查询

     示例1:

    GET /_search
    { "query": {
    "prefix" : { "user" : "ki" }
    }
    }
     示例2:加权

    GET /_search
    { "query": {
    "prefix" : { "user" : { "value" : "ki", "boost" : 2.0 } }
    }
    }
     11.6 wildcard query 通配符查询: ? *

     示例1:

    GET /_search
    {
    "query": {
    "wildcard" : { "user" : "ki*y" }
    }
    }
     示例2:加权

    GET /_search
    {
    "query": {
    "wildcard": {
    "user": {
    "value": "ki*y",
    "boost": 2
    }
    }
    }}
     

    11.7  regexp query   正则查询

    示例1:

    GET /_search
    {
    "query": {
    "regexp":{
    "name.first": "s.*y"
    }
    }
    }
     

    示例2:加权

    GET /_search
    {
    "query": {
    "regexp":{
    "name.first":{
    "value":"s.*y",
    "boost":1.2
    }
    }
    }
    }
     

    正则语法请参考:

    https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-regexp-query.html#regexp-syntax

    11.8 fuzzy query 模糊查询

    示例1:

    GET /_search
    {
    "query": {
    "fuzzy" : { "user" : "ki" }
    }
    }
    示例2:

    GET /_search
    {
    "query": {
    "fuzzy" : {
    "user" : {
    "value": "ki",
    "boost": 1.0,
    "fuzziness": 2,
    "prefix_length": 0,
    "max_expansions": 100
    }
    }
    }
    }
     

    11.9 type query   mapping type 查询

    GET /_search
    {
    "query": {
    "type" : {
    "value" : "_doc"
    }
    }
    }
     

    11.10 ids query   根据文档id查询

    GET /_search
    {
    "query": {
    "ids" : {
    "type" : "_doc",
    "values" : ["1", "4", "100"]
    }
    }
    }
     

    12. Compound querys 复合查询


     官网链接:

    https://www.elastic.co/guide/en/elasticsearch/reference/current/compound-queries.html

     12.1 Constant Score query

     用来包装另一个查询,将查询匹配的文档的评分设为一个常值。

    GET /_search
    {
    "query": {
    "constant_score" : {
    "filter" : {
    "term" : { "user" : "kimchy"}
    },
    "boost" : 1.2
    }
    }
    }
     

     12.2 Bool query

     Bool 查询用bool操作来组合多个查询字句为一个查询。 可用的关键字:

    示例:

    POST _search
    {
    "query": {
    "bool" : {
    "must" : {
    "term" : { "user" : "kimchy" }
    },
    "filter": {
    "term" : { "tag" : "tech" }
    },
    "must_not" : {
    "range" : {
    "age" : { "gte" : 10, "lte" : 20 }
    }
    },
    "should" : [
    { "term" : { "tag" : "wow" } },
    { "term" : { "tag" : "elasticsearch" } }
    ],
    "minimum_should_match" : 1,
    "boost" : 1.0
    }
    }
    }
    --------------------- 

  • 相关阅读:
    Codeforces Round #412 (rated, Div. 2, base on VK Cup 2017 Round 3) C. Success Rate
    Codeforces Round #412 (rated, Div. 2, base on VK Cup 2017 Round 3) B. T-Shirt Hunt
    go 读取数据库所有表数据显示到网页(便于测试时看)
    go 文件上传
    go 文件服务(读取须权限)
    vps git无法clone DNS解析错误
    go 自己封的postgresql连接池操作包
    看 迪杰斯特拉(Dijsktra)算法体会
    Floyd算法(弗洛伊德算法) 百度百科
    Constructing Roads In JGShining's Kingdom
  • 原文地址:https://www.cnblogs.com/hyhy904/p/11014015.html
Copyright © 2011-2022 走看看