2019-10-14 22:13:18
问题描述:
问题求解:
解法一:动态规划
这种数组划分的题目基本都可以使用dp来解决,核心的思路就是先维护低的划分,再在中间找分割点加入新的划分。
public int splitArray(int[] nums, int m) { int n = nums.length; long[][] dp = new long[m + 1][n]; long[] presum = new long[n]; presum[0] = nums[0]; for (int i = 1; i < n; i++) presum[i] = presum[i - 1] + nums[i]; for (int i = 0; i < n; i++) dp[1][i] = presum[i]; for (int i = 2; i <= m; i++) { for (int j = i - 1; j < n; j++) { dp[i][j] = presum[n - 1]; for (int k = i - 2; k < j; k++) { dp[i][j] = Math.min(dp[i][j], Math.max(dp[i - 1][k], presum[j] - presum[k])); } } } return (int)dp[m][n - 1]; }
解法二:二分搜索
最小化最大的子串和是典型的二分搜索的问题描述。
求最小值的模版是(l, r],并不断维护。
public int splitArray(int[] nums, int m) { long l = 0; long r = 0; for (int num : nums) r += num; while (r - l > 1) { long mid = l + (r - l) / 2; int k = helper(nums, mid); if (k <= m) r = mid; else l = mid; } return (int)r; } private int helper(int[] nums, long target) { int n = nums.length; int res = 0; for (int i = 0; i < n;) { long curr = 0; while (i < n) { curr += nums[i]; if (curr > target) { curr -= nums[i]; break; } else i += 1; } if (curr == 0) return n + 1; res += 1; } return res; }