2018-10-06 22:04:38
问题描述:
问题求解:
对于边没有权重的最短路径的求解,首选的方案是bfs。
本题要求是求遍历所有节点的最短路径,由于本题中是没有要求一个节点只能访问一次的,也就是说可以访问一个节点多次,但是如果表征两次节点状态呢?可以使用(curNode, VisitedNode)来进行表征,如果两次的已经访问的节点相同那么就没有必要再进行访问了,最终的状态就是所有节点都访问过了。
另外,由于起点对结果是有影响的,因此在最开始需要将所有的节点都压栈。
public int shortestPathLength(int[][] graph) { int n = graph.length; int target = (1 << n) - 1; Queue<Integer> q = new LinkedList<>(); Set<Integer> seen = new HashSet<>(); for (int i = 0; i < n; i++) { q.add(i << 16 | 1 << i); seen.add(i << 16 | 1 << i); } int step = 0; while (!q.isEmpty()) { int size = q.size(); for (int i = 0; i < size; i++) { int cur = q.poll(); int node = cur >> 16; int state = cur & 0xffff; if (state == target) return step; for (int next : graph[node]) { int newstate = state | 1 << next; if (seen.contains(next << 16 | newstate)) continue; q.add(next << 16 | newstate); seen.add(next << 16 | newstate); } } step += 1; } return -1; }
扩展:
- 864. Shortest Path to Get All Keys
问题描述:
问题求解:
给一个BFS模版。
public int shortestPathAllKeys(String[] grid) { int m = grid.length; int n = grid[0].length(); Queue<Integer> q = new LinkedList<>(); HashSet<Integer> seen = new HashSet<>(); int target = 0; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { char c = grid[i].charAt(j); if (c == '@') { q.add(i << 16 | j << 8); seen.add(i << 16 | j << 8); } if (c >= 'a' && c <= 'f') target |= 1 << (c - 'a'); } } int[][] dirs = new int[][]{{-1, 0}, {1, 0}, {0, -1}, {0, 1}}; int step = 0; while (!q.isEmpty()) { int size = q.size(); for (int i = 0; i < size; i++) { int cur = q.poll(); int x = cur >> 16; int y = cur >> 8 & 0xFF; int key = cur & 0xFF; if (key == target) return step; for (int[] dir : dirs) { int nx = x + dir[0]; int ny = y + dir[1]; int nkey = key; if (nx < 0 || nx >= m || ny < 0 || ny >= n) continue; char c = grid[nx].charAt(ny); if (c == '#') continue; if (c >= 'A' && c <= 'F' && ((key & (1 << (c - 'A'))) == 0)) continue; if (c >= 'a' && c <= 'f') nkey = key | (1 << (c - 'a')); int newstate = nx << 16 | ny << 8 | nkey; if (seen.contains(newstate)) continue; q.add(newstate); seen.add(newstate); } } step += 1; } return -1; }