这个作业属于哪个课程 | <2020-2021-1Linux内核原理与分析)> |
---|---|
这个作业要求在哪里 | <2020-2021-1Linux内核原理与分析第九周作业> |
这个作业的目标 | <理解进程调度时机跟踪分析进程调度与进程切换的过程> |
作业正文 | https://www.cnblogs.com/hyuxin/p/14092528.html |
实验八
实验要求
1.理解Linux系统中进程调度的时机,可以在内核代码中搜索schedule()函数,看都是哪里调用了schedule(),判断我们课程内容中的总结是否准确;
2.使用gdb跟踪分析一个schedule()函数 ,验证您对Linux系统进程调度与进程切换过程的理解;推荐在实验楼Linux虚拟机环境下完成实验。
3.特别关注并仔细分析switch_to中的汇编代码,理解进程上下文的切换机制,以及与中断上下文切换的关系;
实验过程
1.重新克隆一个menu,然后重新编译内核。
2.另打开一个窗口进行gdb远程调试,配置gdb远程调试并设置断点。
关键代码分析
context_switch
static inline void context_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next)
{
arch_start_context_switch(prev);
if (unlikely(!mm)) { //如果被切换进来的进程的mm为空切换,内核线程mm为空
next->active_mm = oldmm; //将共享切换出去的进程的active_mm
atomic_inc(&oldmm->mm_count); //有一个进程共享,所有引用计数加一
enter_lazy_tlb(oldmm, next); //将per cpu变量cpu_tlbstate状态设为LAZY
} else //普通mm不为空,则调用switch_mm切换地址空间
switch_mm(oldmm, mm, next);
//这里切换寄存器状态和栈
switch_to(prev, next, prev);
switch_to
#define switch_to(prev, next, last)
do {
/*
* Context-switching clobbers all registers, so we clobber
* them explicitly, via unused output variables.
* (EAX and EBP is not listed because EBP is saved/restored
* explicitly for wchan access and EAX is the return value of
* __switch_to())
*/
unsigned long ebx, ecx, edx, esi, edi;
asm volatile(
"pushfl
" //保存当前进程flags
"pushl %%ebp
" //当前进程堆栈基址压栈
"movl %%esp,%[prev_sp]
" //保存ESP,将当前堆栈栈顶保存起来
"movl %[next_sp],%%esp
" //更新ESP,将下一栈顶保存到ESP中
// 完成内核堆栈的切换
"movl $1f,%[prev_ip]
" //保存当前进程的EIP
"pushl %[next_ip]
" //将next进程起点压入堆栈,即next进程的栈顶为起点
__switch_canary //next_ip一般为$1f,对于新创建的子进程是ret_from_fork
"jmp __switch_to
" //prve进程中,设置next进程堆栈,jmp与call不同,是通过寄存器传递参数(call通过堆栈),所以ret时弹出的是之前压入栈顶的next进程起点
//完成EIP的切换
"1: " //next进程开始执行
"popl %%ebp
" //restore EBP
"popfl
" //restore flags
//输出量
: [prev_sp] "=m" (prev->thread.sp), //保存当前进程的esp
[prev_ip] "=m" (prev->thread.ip), //保存当前进仓的eip
"=a" (last),
//要破坏的寄存器
"=b" (ebx), "=c" (ecx), "=d" (edx),
"=S" (esi), "=D" (edi)
__switch_canary_oparam
//输入量
: [next_sp] "m" (next->thread.sp), //next进程的内核堆栈栈顶地址,即esp
[next_ip] "m" (next->thread.ip), //next进程的eip
// regparm parameters for __switch_to():
[prev] "a" (prev),
[next] "d" (next)
__switch_canary_iparam
: //重新加载段寄存器
"memory");
} while (0)
总结
1.schedule函数:
Linux内核通过schedule函数实现进程调度,schedule函数在运行队列中找到一个进程,把CPU分配给它。所以调用schedule函数的时候就是进程调度的时机。
2.进程调度时机:
用户进程通过特定的系统调用主动让出CPU。
中断处理程序在内核返回用户态时进行调度。
内核线程主动调用schedule函数让出CPU。
中断处理程序主动调用schedule函数让出CPU,涵盖第一和第二种情况。
3.进程切换
4.Linux系统的运行过程
Linux系统的一般执行过程:正在运行的用户态进程X切换到用户态进程Y的过程:
1.正在运行的用户态进程X;
2.发生中断(包括异常,系统调用等),硬件完成以下动作:
save cs:eip/esp/eflags:当前CPU上下文压入用户态进程X的内核堆栈;
load cs:eip(entry of a specific ISR) and ss:esp(point to kernel stack)
3.SAVE_ALL,保存现场
4.中断处理过程中或中断返回前调用了schedule(),其中的switch_to做了关键的进程上下文切换;
5.标号1,之后开始运行用户态进程Y(这里Y曾经通过以上步骤被切换出去过因此可以从标号1继续执行);
6.restore_all,恢复现场;
7.iret-pop cs:eip/ss:esp/eflags,从Y进程的内核堆栈中弹出(2)中硬件完成的压栈内容;
8.继续运行用户态进程Y。