zoukankan      html  css  js  c++  java
  • cf div2 235 D

    D. Roman and Numbers
    time limit per test
    4 seconds
    memory limit per test
    512 megabytes
    input
    standard input
    output
    standard output

    Roman is a young mathematician, very famous in Uzhland. Unfortunately, Sereja doesn't think so. To make Sereja change his mind, Roman is ready to solve any mathematical problem. After some thought, Sereja asked Roma to find, how many numbers are close to number n, modulo m.

    Number x is considered close to number n modulo m, if:

    • it can be obtained by rearranging the digits of number n,
    • it doesn't have any leading zeroes,
    • the remainder after dividing number x by m equals 0.

    Roman is a good mathematician, but the number of such numbers is too huge for him. So he asks you to help him.

    Input

    The first line contains two integers: n (1 ≤ n < 1018) and m (1 ≤ m ≤ 100).

    Output

    In a single line print a single integer — the number of numbers close to number n modulo m.

    Sample test(s)
    input
    104 2
    output
    3
    input
    223 4
    output
    1
    input
    7067678 8
    output
    47
    Note

    In the first sample the required numbers are: 104, 140, 410.

    In the second sample the required number is 232.

    状态DP  dp[S | (1 << j) ][(k * 10 + a[j])] += dp[S][k];  ( s 里不包括 第j 个元素)

    dp[S][k] 代表 取s 代表 所取的元素集合,k代表对m的取模,则这个数组代表在这一状态的数目

     1 #include <cstdio>
     2 #include <cstring>
     3 #include <algorithm>
     4 #include <iostream>
     5 #include <cmath>
     6 #include <bitset>
     7 
     8 using namespace std;
     9 
    10 typedef long long ll;
    11 
    12 #define maxn (1 << 18)
    13 
    14 ll dp[maxn][105],fac[20];
    15 int s[105],num[10];
    16 int m,len = 0;
    17 ll n;
    18 
    19 
    20 
    21 void init() {
    22         ll t = n;
    23         while(t) {
    24                 s[len++] = t % 10;
    25                 num[t % 10]++;
    26                 t /= 10;
    27         }
    28 
    29         fac[0] = 1;
    30         for(int i = 1; i <= 18; i++) {
    31                 fac[i] = fac[i - 1] * i;
    32         }
    33 
    34 
    35 
    36         for(int S = 1; S < (1 << len); S++) {
    37                 for(int j = 0; j < m; j++) {
    38                         dp[S][j] = 0;
    39                 }
    40         }
    41 }
    42 
    43 void solve() {
    44         init();
    45 
    46         dp[0][0] = 1;
    47 
    48         for(int S = 0; S <  (1 << len); ++S) {
    49                 for(int j = 0; j < len; ++j) {
    50                         if(!(S & (1 << j))) {
    51                                 for(int k = 0; k < m; ++k) {
    52                                         if(S || s[j])
    53                                                 dp[S | (1 << j)][(k * 10 + s[j]) % m]
    54                                                 += dp[S][k];
    55 
    56                                 }
    57                         }
    58 
    59 
    60                 }
    61 
    62         }
    63 
    64         for(int i = 0; i < 10; i++) {
    65                 if(num[i] > 1) {
    66                         dp[(1 << len) - 1][0] /= fac[ num[i] ];
    67                 }
    68 
    69         }
    70         printf("%I64d
    ",dp[(1 << len) - 1][0]);
    71 
    72 
    73 }
    74 
    75 int main () {
    76 
    77     //freopen("sw.in","r",stdin);
    78 
    79     scanf("%I64d%d",&n,&m);
    80 
    81     solve();
    82 
    83     return 0;
    84 
    85 
    86 
    87 }
    View Code
  • 相关阅读:
    大三学长带我学习JAVA.作业8。。1 有1、2、3、4这几个数字,能组成多少个互不相同且无重复数字的三位数?都是多少?
    详解Manifest
    反射机制和配置文件的用法
    大三学长带我学习JAVA.作业8。 判断101200之间有多少个素数,并输出所有素数。
    序曲
    java打包生成jar和exe全过程
    大三学长带我学习JAVA.作业6 编写日历表 和vim
    大三学长带我学习JAVA.作业7 利用for循环打印 9*9 表
    动态代理类
    pku 3522 Slim Span
  • 原文地址:https://www.cnblogs.com/hyxsolitude/p/3595203.html
Copyright © 2011-2022 走看看