zoukankan      html  css  js  c++  java
  • POJ 1930

    Dead Fraction
    Time Limit: 1000MS   Memory Limit: 30000K
    Total Submissions: 1762   Accepted: 568

    Description

    Mike is frantically scrambling to finish his thesis at the last minute. He needs to assemble all his research notes into vaguely coherent form in the next 3 days. Unfortunately, he notices that he had been extremely sloppy in his calculations. Whenever he needed to perform arithmetic, he just plugged it into a calculator and scribbled down as much of the answer as he felt was relevant. Whenever a repeating fraction was displayed, Mike simply reccorded the first few digits followed by "...". For instance, instead of "1/3" he might have written down "0.3333...". Unfortunately, his results require exact fractions! He doesn't have time to redo every calculation, so he needs you to write a program (and FAST!) to automatically deduce the original fractions. 
    To make this tenable, he assumes that the original fraction is always the simplest one that produces the given sequence of digits; by simplest, he means the the one with smallest denominator. Also, he assumes that he did not neglect to write down important digits; no digit from the repeating portion of the decimal expansion was left unrecorded (even if this repeating portion was all zeroes).

    Input

    There are several test cases. For each test case there is one line of input of the form "0.dddd..." where dddd is a string of 1 to 9 digits, not all zero. A line containing 0 follows the last case.

    Output

    For each case, output the original fraction.

    Sample Input

    0.2...
    0.20...
    0.474612399...
    0
    

    Sample Output

    2/9
    1/5
    1186531/2500000
    

    Hint

    Note that an exact decimal fraction has two repeating expansions (e.g. 1/5 = 0.2000... = 0.19999...).

    Source

     
    将分数分成循环的部分和非循环的部分
    设分数为0.i1 i2 i3 i4 .. ik j1 j2 j3 .. jc               其中i1 ~ ik 为非循环的部分    j1 ~ jc为循环部分
    非循环的部分可以拆成 b / a 其中 b = ( i1...ik)   a = 10 ^ (k)
    循环的部分可以拆成  bb / aa 其中 bb = (j1 .. jc)  aa = 10 ^ (k + c) - 10 ^ ( k);
     
    则 所求分数为 b / a + bb / aa     通分得 (b * aa + bb * a) / a * aa       约分得答案,由于据说数据会有全是0的坑爹数据,所以要判断一下
     
     
     1 #include <cstdio>
     2 #include <cstring>
     3 #include <algorithm>
     4 #include <iostream>
     5 
     6 using namespace std;
     7 
     8 typedef long long ll;
     9 
    10 char s[20];
    11 ll ten_pow[20];
    12 
    13 ll gcd(ll x,ll y) {
    14         return y > 0 ? gcd(y,x % y) : x;
    15 }
    16 
    17 void init() {
    18         ten_pow[0] = 1;
    19         for(int i = 1; i <= 9; i++) {
    20                 ten_pow[i] = ten_pow[i - 1] * 10;
    21         }
    22 
    23         /*for(int i = 0; i <= 9; i++){
    24                 printf("%lld
    ",ten_pow[i]);
    25 
    26         }*/
    27 }
    28 void solve() {
    29 
    30         ll a,b,aa,bb;
    31         ll ans1,ans2 = -1;
    32         for(int i = 0; i < strlen(s) - 2; i++) {
    33                     b = 0; bb = 0;
    34                     for(int j = 2; j < 2 + i; j++) {
    35                             b += (s[j] - '0') * ten_pow[1 + i - j];
    36                     }
    37                     for(int j = 2 + i; j < strlen(s); j++){
    38                             bb += (s[j] - '0') * ten_pow[strlen(s) - 1 - j];
    39                     }
    40 
    41 
    42                     a = ten_pow[i];
    43                     aa = ten_pow[strlen(s) - 2] - ten_pow[i];
    44                    // printf("b =%lld bb=%lld a = %lld aa = %lld
    ",b,bb,a,aa);
    45 
    46                     b = b * aa + bb * a;
    47                     a *= aa;
    48 
    49                     ll t = gcd(a,b);
    50                     b /= t;
    51                     a /= t;
    52 
    53                     //printf("a = %lld b = %lld
    ",a,b);
    54                     if(ans2 == -1 || ans2 > a) {
    55                             ans2 = a;
    56                             ans1 = b;
    57                     }
    58 
    59 
    60         }
    61 
    62         printf("%I64d/%I64d
    ",ans1,ans2);
    63 
    64 
    65 
    66 }
    67 
    68 int main() {
    69         init();
    70        // freopen("sw.in","r",stdin);
    71 
    72         while(~scanf("%s",s) && strlen(s) != 1) {
    73 
    74 
    75                 int pos = strlen(s) - 1;
    76                 while(s[pos] == '.') {
    77                         s[pos--] = '';
    78                 }
    79 
    80                 bool flag = 0;
    81                 for(int i = 2; i < strlen(s); i++) {
    82                         if(s[i] != '0' ) flag = 1;
    83 
    84                 }
    85 
    86                 //puts(s);
    87 
    88                 if(!flag) {
    89                         printf("0/1
    ");
    90                         continue;
    91                 }
    92 
    93                 solve();
    94 
    95         }
    96 
    97         return 0;
    98 }
    View Code
  • 相关阅读:
    java的原子类 AtomicInteger 实现原理是什么?
    Tomcat性能调优
    JVM性能调优
    vue下载和上传excle数据文件,解析excel文件数据并存在数据库中
    07----popo up 弹窗
    06----fiter
    05 ---批量操作
    04
    stark组件03
    stack组件03
  • 原文地址:https://www.cnblogs.com/hyxsolitude/p/3597472.html
Copyright © 2011-2022 走看看