zoukankan      html  css  js  c++  java
  • POJ 3579

    Median
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 3528   Accepted: 1001

    Description

    Given N numbers, X1, X2, ... , XN, let us calculate the difference of every pair of numbers: ∣Xi - Xj∣ (1 ≤ i j N). We can get C(N,2) differences through this work, and now your task is to find the median of the differences as quickly as you can!

    Note in this problem, the median is defined as the (m/2)-th  smallest number if m,the amount of the differences, is even. For example, you have to find the third smallest one in the case of m = 6.

    Input

    The input consists of several test cases.
    In each test case, N will be given in the first line. Then N numbers are given, representing X1, X2, ... , XN, ( Xi ≤ 1,000,000,000  3 ≤ N ≤ 1,00,000 )

    Output

    For each test case, output the median in a separate line.

    Sample Input

    4
    1 3 2 4
    3
    1 10 2
    

    Sample Output

    1
    8

    Source

     
    二分中位数
     
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <algorithm>
     5 
     6 using namespace std;
     7 
     8 #define maxn 100005
     9 #define INF 200005
    10 typedef long long ll;
    11 
    12 int n;
    13 int a[maxn],dis[maxn];
    14 ll num;
    15 
    16 bool judge(int x) {
    17 
    18     int pos,i = 1,now = 0;
    19     ll sum = 0;
    20     while(i < n) {
    21             pos = upper_bound(dis + 1,dis + n + 1,x + now) - dis;
    22             sum += n - (pos);
    23             now = dis[i];
    24             if((n - 1) - pos + 1 == 0) break;
    25             ++i;
    26     }
    27 
    28     //printf("x = %d sum = %lld
    ",x,sum);
    29 
    30     return num - sum - (num % 2) >= sum;
    31 }
    32 
    33 void solve() {
    34 
    35     num = (ll)n * (n - 1) / 2;
    36 
    37     int l = INF,r = a[n] - a[1];
    38     for(int i = 1; i < n; ++i) {
    39             dis[i] = a[i + 1] - a[1];
    40             l = min(l,a[i + 1] - a[i]);
    41            // printf("%d ",dis[i]);
    42     }
    43     dis[n] = INF;
    44 
    45     //printf("l = %d r = %d
    ",l,r);
    46 
    47     while(l < r) {
    48             int mid = (l + r) >> 1;
    49             if(judge(mid)) {
    50                     r = mid;
    51             } else {
    52                     l = mid + 1;
    53             }
    54     }
    55 
    56     printf("%d
    ",l);
    57 
    58 }
    59 
    60 int main()
    61 {
    62    // freopen("sw.in","r",stdin);
    63 
    64     while(~scanf("%d",&n)) {
    65             for(int i =  1; i <= n; ++i) {
    66                     scanf("%d",&a[i]);
    67             }
    68 
    69             sort(a + 1,a + n + 1);
    70 
    71             solve();
    72     }
    73 
    74 
    75     return 0;
    76 }
    View Code
  • 相关阅读:
    15. 驱动通用编译脚本
    13. linux 中断式驱动编程
    vlc源码分析(二) 播放流程
    vlc源码分析(一) vlc-android native调试配置
    RTSP会话流程——理论结合例子,非常具有参考意义
    RTSP协议学习笔记——详细总纲,入门圣典
    VLC源码分析总结 ——入门纲领
    如何阅读X264代码
    源码分析系列(五)x264_ratecontrol_dataflow
    源码分析系列(四)x264_nal_dataflow
  • 原文地址:https://www.cnblogs.com/hyxsolitude/p/3600305.html
Copyright © 2011-2022 走看看