zoukankan      html  css  js  c++  java
  • POJ 3977

    Subset
    Time Limit: 30000MS   Memory Limit: 65536K
    Total Submissions: 1373   Accepted: 228

    Description

    Given a list of N integers with absolute values no larger than 1015, find a non empty subset of these numbers which minimizes the absolute value of the sum of its elements. In case there are multiple subsets, choose the one with fewer elements.

    Input

    The input contains multiple data sets, the first line of each data set contains N <= 35, the number of elements, the next line contains N numbers no larger than 1015 in absolute value and separated by a single space. The input is terminated with N = 0

    Output

    For each data set in the input print two integers, the minimum absolute sum and the number of elements in the optimal subset.

    Sample Input

    1
    10
    3
    20 100 -100
    0

    Sample Output

    10 1
    0 2

    Source

     
     
    把集合分成两个 N / 2的集合,然后生成一种一个集合2 ^ (n - 1)种状态的和,对于另一个集合的所有状态的和 在前一个集合中二分找到一个最接近的
    并找到集合元素最小的即是所求答案
     
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <algorithm>
     5 #include <utility>
     6 
     7 using namespace std;
     8 
     9 
    10 typedef long long ll;
    11 typedef pair<ll,int> pii;
    12 
    13 
    14 const ll INF = (1e17) + 5;
    15 const  int MAX = 40;
    16 
    17 int N;
    18 ll w[MAX];
    19 pii ps[(1 << 20) + 5];
    20 int cal[1 << 20],dx[4] = {-1,-2,0,1};
    21 
    22 ll Abs(ll x) {
    23         return x > 0 ? x : -x;
    24 }
    25 
    26 void init() {
    27         for(int s = 0; s < (1 << 20); ++s) {
    28                 int sum = 0;
    29                 for(int i = 0; i < 20; ++i) {
    30                         if(s >> i & 1) ++sum;
    31                 }
    32                 cal[s] = sum;
    33         }
    34 }
    35 void solve() {
    36         int n = N / 2;
    37         ll sw = 0;
    38         for(int s = 0; s < (1 << n); ++s) {
    39                 sw = 0;
    40                 for(int j = 0; j < n; ++j) {
    41                         if(s >> j & 1) sw += w[j];
    42                 }
    43                 ps[s] = make_pair(sw,cal[s]);
    44         }
    45         sort(ps,ps + (1 << n));
    46 
    47         int n1 = N - n;
    48         ll ansv = INF;
    49         int anss = N;
    50         for(int s = 0; s < (1 << n1); ++s) {
    51                 sw = 0;
    52                 for(int j = n; j < N; ++j) {
    53                         if(s >> (j - n) & 1) sw += w[j];
    54                 }
    55                 int pos = lower_bound(ps,ps + (1 << n),make_pair(-sw,-1)) - ps;
    56                 ll v = INF,t = INF;
    57                 for(int i = 0; i < 4; ++i) {
    58                         int id = pos + dx[i];
    59                         if(id >= 0 && id < (1 << n)
    60                            && (ps[id].second || s)) {
    61                                 if(Abs(ps[id].first + sw) < t) {
    62                                         t = Abs(ps[id].first + sw);
    63                                         v = ps[id].first;
    64                                 }
    65                         }
    66                 }
    67                 pos = lower_bound(ps,ps + (1 << n),make_pair(v,-1)) - ps;
    68                 if(s == 0 && ps[pos].second == 0) ++pos;
    69                 if(ansv > Abs(v + sw) || ansv == Abs(v + sw) && anss > cal[s] + ps[pos].second) {
    70                         ansv = Abs(v + sw);
    71                         anss = cal[s] + ps[pos].second;
    72                 }
    73         }
    74 
    75         printf("%I64d %d
    ",ansv,anss);
    76 }
    77 
    78 int main()
    79 {
    80     freopen("sw.in","r",stdin);
    81     init();
    82     while(~scanf("%d",&N) && N) {
    83             for(int i = 0; i < N; ++i) scanf("%I64d",&w[i]);
    84             solve();
    85     }
    86 
    87     return 0;
    88 }
    View Code
  • 相关阅读:
    A breakdown pie chart ReportLab Snippets (Beta)
    彩程轶事 | 彩程团队BLOG
    Proxy server
    VIM Quick Reference Card
    Search for visually selected text
    httpstats: HTTP/1.1 Connection header field
    Get File Name from File Path in Python | Code Comments
    vim 控小结
    Django Admin Bootstrap theme
    Mike McCreavy’s Resume: Silicon Valley Software Engineer, Developer, Architect | mccreavy
  • 原文地址:https://www.cnblogs.com/hyxsolitude/p/3642053.html
Copyright © 2011-2022 走看看