zoukankan      html  css  js  c++  java
  • POJ 3977

    Subset
    Time Limit: 30000MS   Memory Limit: 65536K
    Total Submissions: 1373   Accepted: 228

    Description

    Given a list of N integers with absolute values no larger than 1015, find a non empty subset of these numbers which minimizes the absolute value of the sum of its elements. In case there are multiple subsets, choose the one with fewer elements.

    Input

    The input contains multiple data sets, the first line of each data set contains N <= 35, the number of elements, the next line contains N numbers no larger than 1015 in absolute value and separated by a single space. The input is terminated with N = 0

    Output

    For each data set in the input print two integers, the minimum absolute sum and the number of elements in the optimal subset.

    Sample Input

    1
    10
    3
    20 100 -100
    0

    Sample Output

    10 1
    0 2

    Source

     
     
    把集合分成两个 N / 2的集合,然后生成一种一个集合2 ^ (n - 1)种状态的和,对于另一个集合的所有状态的和 在前一个集合中二分找到一个最接近的
    并找到集合元素最小的即是所求答案
     
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <algorithm>
     5 #include <utility>
     6 
     7 using namespace std;
     8 
     9 
    10 typedef long long ll;
    11 typedef pair<ll,int> pii;
    12 
    13 
    14 const ll INF = (1e17) + 5;
    15 const  int MAX = 40;
    16 
    17 int N;
    18 ll w[MAX];
    19 pii ps[(1 << 20) + 5];
    20 int cal[1 << 20],dx[4] = {-1,-2,0,1};
    21 
    22 ll Abs(ll x) {
    23         return x > 0 ? x : -x;
    24 }
    25 
    26 void init() {
    27         for(int s = 0; s < (1 << 20); ++s) {
    28                 int sum = 0;
    29                 for(int i = 0; i < 20; ++i) {
    30                         if(s >> i & 1) ++sum;
    31                 }
    32                 cal[s] = sum;
    33         }
    34 }
    35 void solve() {
    36         int n = N / 2;
    37         ll sw = 0;
    38         for(int s = 0; s < (1 << n); ++s) {
    39                 sw = 0;
    40                 for(int j = 0; j < n; ++j) {
    41                         if(s >> j & 1) sw += w[j];
    42                 }
    43                 ps[s] = make_pair(sw,cal[s]);
    44         }
    45         sort(ps,ps + (1 << n));
    46 
    47         int n1 = N - n;
    48         ll ansv = INF;
    49         int anss = N;
    50         for(int s = 0; s < (1 << n1); ++s) {
    51                 sw = 0;
    52                 for(int j = n; j < N; ++j) {
    53                         if(s >> (j - n) & 1) sw += w[j];
    54                 }
    55                 int pos = lower_bound(ps,ps + (1 << n),make_pair(-sw,-1)) - ps;
    56                 ll v = INF,t = INF;
    57                 for(int i = 0; i < 4; ++i) {
    58                         int id = pos + dx[i];
    59                         if(id >= 0 && id < (1 << n)
    60                            && (ps[id].second || s)) {
    61                                 if(Abs(ps[id].first + sw) < t) {
    62                                         t = Abs(ps[id].first + sw);
    63                                         v = ps[id].first;
    64                                 }
    65                         }
    66                 }
    67                 pos = lower_bound(ps,ps + (1 << n),make_pair(v,-1)) - ps;
    68                 if(s == 0 && ps[pos].second == 0) ++pos;
    69                 if(ansv > Abs(v + sw) || ansv == Abs(v + sw) && anss > cal[s] + ps[pos].second) {
    70                         ansv = Abs(v + sw);
    71                         anss = cal[s] + ps[pos].second;
    72                 }
    73         }
    74 
    75         printf("%I64d %d
    ",ansv,anss);
    76 }
    77 
    78 int main()
    79 {
    80     freopen("sw.in","r",stdin);
    81     init();
    82     while(~scanf("%d",&N) && N) {
    83             for(int i = 0; i < N; ++i) scanf("%I64d",&w[i]);
    84             solve();
    85     }
    86 
    87     return 0;
    88 }
    View Code
  • 相关阅读:
    delphi 的插件机制与自动更新
    delphi 的 ORM 框架
    canner CMS 系统 (公司在台湾) https://www.canner.io/
    区块链 ---- 数字货币交易
    BIM平台 http://gzcd.bim001.cn
    TreeGrid 控件集 :delphi 学习群 ---- 166637277 (Delphi学习交流与分享)
    UniGUI 如何进行 UniDBGrid 的单元 Cell 的计算 ?
    国产 WEB UI 框架 (收费)-- Quick UI,Mini UI
    iOS尽量不要在viewWillDisappear:方法中移除通知
    Tips:取消UICollectionView的隐式动画
  • 原文地址:https://www.cnblogs.com/hyxsolitude/p/3642053.html
Copyright © 2011-2022 走看看