zoukankan      html  css  js  c++  java
  • poj 1986

    Distance Queries
    Time Limit: 2000MS   Memory Limit: 30000K
    Total Submissions: 8638   Accepted: 3032
    Case Time Limit: 1000MS

    Description

    Farmer John's cows refused to run in his marathon since he chose a path much too long for their leisurely lifestyle. He therefore wants to find a path of a more reasonable length. The input to this problem consists of the same input as in "Navigation Nightmare",followed by a line containing a single integer K, followed by K "distance queries". Each distance query is a line of input containing two integers, giving the numbers of two farms between which FJ is interested in computing distance (measured in the length of the roads along the path between the two farms). Please answer FJ's distance queries as quickly as possible! 

    Input

    * Lines 1..1+M: Same format as "Navigation Nightmare" 

    * Line 2+M: A single integer, K. 1 <= K <= 10,000 

    * Lines 3+M..2+M+K: Each line corresponds to a distance query and contains the indices of two farms. 

    Output

    * Lines 1..K: For each distance query, output on a single line an integer giving the appropriate distance. 

    Sample Input

    7 6
    1 6 13 E
    6 3 9 E
    3 5 7 S
    4 1 3 N
    2 4 20 W
    4 7 2 S
    3
    1 6
    1 4
    2 6
    

    Sample Output

    13
    3
    36
    

    Hint

    Farms 2 and 6 are 20+3+13=36 apart. 

    Source

     
    lca
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <algorithm>
     5 #include <stack>
     6 #include <vector>
     7 
     8 using namespace std;
     9 
    10 const int MAX_N = 40005;
    11 int N,M;
    12 int first[MAX_N],Next[2 * MAX_N],v[2 * MAX_N];
    13 int id[MAX_N],vs[2 * MAX_N];
    14 int dep[MAX_N * 2],d[MAX_N * 2][30],qid[MAX_N * 2][30];
    15 int Dis[MAX_N],w[MAX_N * 2];
    16 int n;
    17 
    18 void RMQ() {
    19         for(int i = 1; i <= n; ++i) {
    20                 d[i][0] = dep[i];
    21                 qid[i][0] = i;
    22         }
    23 
    24         for(int j = 1; (1 << j) <= n; ++j) {
    25                 for(int i = 1; i + (1 << j) - 1 <= n; ++i) {
    26                         if(d[i][j - 1] > d[i + (1 << (j - 1))][j - 1]) {
    27                                 d[i][j] = d[i + (1 << (j - 1))][j - 1];
    28                                 qid[i][j] = qid[i + (1 << (j - 1))][j - 1];
    29                         } else {
    30                                 d[i][j] = d[i][j - 1];
    31                                 qid[i][j] = qid[i][j - 1];
    32                         }
    33                 }
    34         }
    35 
    36 }
    37 
    38 void add_edge(int id,int u) {
    39         int e = first[u];
    40         Next[id] = e;
    41         first[u] = id;
    42 }
    43 
    44 int  query(int L,int R) {
    45         int k = 0;
    46         while((1 << (k + 1)) < (R - L + 1)) ++k;
    47         return d[L][k] < d[R - (1 << k) + 1][k] ?
    48                qid[L][k] : qid[R - (1 << k) + 1][k];
    49 }
    50 
    51 void dfs(int u,int fa,int d,int dis,int &k) {
    52         id[u] = k;
    53         vs[k] = u;
    54         dep[k++] = d;
    55         Dis[u] = dis;
    56         for(int e = first[u]; e != -1; e = Next[e]) {
    57                 if(v[e] != fa) {
    58                         dfs(v[e],u,d + 1,dis + w[e],k);
    59                         vs[k] = u;
    60                         dep[k++] = d;
    61                 }
    62         }
    63 }
    64 
    65 int main()
    66 {
    67    // freopen("sw.in","r",stdin);
    68     scanf("%d%d",&N,&M);
    69     n = 2 * N - 1;
    70 
    71     for(int i = 1; i <= N; ++i) first[i] = -1;
    72     for(int i = 1; i <= 2 * M; i += 2) {
    73             int u;
    74             char ch;
    75             scanf("%d%d%d %c",&u,&v[i],&w[i],&ch);
    76             //printf("%d %d %d
    ",u,v[i],w[i]);
    77             w[i + 1] = w[i];
    78             v[i + 1] = u;
    79             add_edge(i,u);
    80             add_edge(i + 1,v[i]);
    81     }
    82 
    83     int k = 1;
    84     dfs(1,-1,0,0,k);
    85     RMQ();
    86 
    87     int Q;
    88     scanf("%d",&Q);
    89     for(int i = 1; i <= Q; ++i) {
    90             int a,b;
    91             scanf("%d%d",&a,&b);
    92             int p = vs[ query(min(id[a],id[b]),max(id[a],id[b])) ];
    93             printf("%d
    ",Dis[a] + Dis[b] - 2 * Dis[p]);
    94     }
    95 
    96     return 0;
    97 }
    View Code
  • 相关阅读:
    CSS练习
    大作业“抽屉页面”html+css
    html练习代码
    协程-基于TCP的高并发通信
    协程-爬虫示例
    互斥锁,递归锁,信号量
    三层架构(我的理解及详细分析)
    递归算法经典实例小结(C#实现)
    使用XmlWriter写Xml
    使用XmlReader读Xml
  • 原文地址:https://www.cnblogs.com/hyxsolitude/p/3712091.html
Copyright © 2011-2022 走看看