zoukankan      html  css  js  c++  java
  • poj 3686

    The Windy's
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 3791   Accepted: 1631

    Description

    The Windy's is a world famous toy factory that owns M top-class workshop to make toys. This year the manager receives N orders for toys. The manager knows that every order will take different amount of hours in different workshops. More precisely, the i-th order will take Zij hours if the toys are making in the j-th workshop. Moreover, each order's work must be wholly completed in the same workshop. And a workshop can not switch to another order until it has finished the previous one. The switch does not cost any time.

    The manager wants to minimize the average of the finishing time of the N orders. Can you help him?

    Input

    The first line of input is the number of test case. The first line of each test case contains two integers, N and M (1 ≤ N,M ≤ 50).
    The next N lines each contain M integers, describing the matrix Zij (1 ≤ Zij ≤ 100,000) There is a blank line before each test case.

    Output

    For each test case output the answer on a single line. The result should be rounded to six decimal places.

    Sample Input

    3
    
    3 4
    100 100 100 1
    99 99 99 1
    98 98 98 1
    
    3 4
    1 100 100 100
    99 1 99 99
    98 98 1 98
    
    3 4
    1 100 100 100
    1 99 99 99
    98 1 98 98
    

    Sample Output

    2.000000
    1.000000
    1.333333
    
    

    Source

     
    每个玩具点对(1 ~ N) * z[i][j]费用的 工厂 建边,求最小费用流
      1 #include <iostream>
      2 #include <cstdio>
      3 #include <cstring>
      4 #include <algorithm>
      5 #include <queue>
      6 #include <vector>
      7 
      8 using namespace std;
      9 
     10 const int MAX = 60;
     11 const int INF = 1e9 + 7;
     12 int N, M;
     13 int z[MAX][MAX];
     14 struct Edge {int from, to, cap, flow, cost;};
     15 vector<Edge> edges;
     16 vector<int> G[MAX * MAX * MAX + 3 * MAX];
     17 int p[MAX * MAX * MAX + 3 * MAX], a[MAX * MAX * MAX + 3 * MAX];
     18 int d[MAX * MAX * MAX + 3 * MAX];
     19 bool inq[MAX * MAX * MAX + 3 * MAX];
     20 
     21 void add_edge(int from, int to, int cap, int cost) {
     22         edges.push_back(Edge {from, to, cap, 0, cost});
     23         edges.push_back(Edge {to, from, 0, 0, -cost});
     24         int m = edges.size();
     25         G[from].push_back(m - 2);
     26         G[to].push_back(m - 1);
     27 }
     28 
     29 bool bellmanford(int s, int t, int &flow, int &cost) {
     30         for(int i = s; i <= t; ++i) {
     31                 d[i] = INF;
     32         }
     33 
     34         memset(inq, 0, sizeof(inq));
     35         d[s] = 0; inq[s] = 1; p[s] = 0; a[s] = INF;
     36 
     37         queue<int> Q;
     38         Q.push(s);
     39         while(!Q.empty()) {
     40                 //printf("fuck
    ");
     41                 int u = Q.front(); Q.pop();
     42                 inq[u] = 0;
     43                 for(int i = 0; i < G[u].size(); ++i) {
     44                         Edge& e = edges[ G[u][i] ];
     45                         if(e.cap > e.flow && d[e.to] > d[u] + e.cost) {
     46                                 d[e.to] = d[u] + e.cost;
     47                                 p[e.to] = G[u][i];
     48                                 a[e.to] = min(a[u], e.cap - e.flow);
     49                                 if(!inq[e.to]) {
     50                                         inq[e.to] = 1;
     51                                         Q.push(e.to);
     52                                 }
     53                         }
     54                 }
     55         }
     56 
     57         if(d[t] == INF) return 0;
     58         flow += a[t];
     59         cost += d[t] * a[t];
     60 
     61         int u = t;
     62         while(u != s) {
     63                 edges[p[u]].flow += a[t];
     64                 edges[p[u] ^ 1].flow -= a[t];
     65                 u = edges[p[u]].from;
     66         }
     67 
     68         return 1;
     69 }
     70 
     71 int Mincost(int s, int t) {
     72         int flow = 0, cost = 0;
     73         while(bellmanford(s, t, flow, cost));
     74         return cost;
     75 }
     76 
     77 int main()
     78 {
     79     //freopen("sw.in", "r", stdin);
     80     int t;
     81     scanf("%d", &t);
     82     while(t--) {
     83             scanf("%d%d", &N, &M);
     84             for(int i = 1; i <= N; ++i) {
     85                     for(int j = 1; j <= M; ++j) {
     86                             scanf("%d", &z[i][j]);
     87                             //printf("%d ", z[i][j]);
     88                     }
     89             }
     90 
     91             int s = 0, t = N + N * M + 1;
     92             for(int i = s; i <= t; ++i) G[i].clear();
     93             edges.clear();
     94 
     95             for(int i = 1; i <= N; ++i) {
     96                     add_edge(s, i, 1, 0);
     97             }
     98 
     99 
    100                     for(int j = 1; j <= M; ++j) {
    101                             for(int k = 1; k <= N; ++k) {
    102                                     add_edge(j * N + k, t, 1, 0);
    103                                     for(int i = 1; i <= N; ++i) {
    104                                             add_edge(i, j * N + k, 1, z[i][j] * k);
    105                                     }
    106                             }
    107                     }
    108                     printf("%.6f
    ", (double) Mincost(s, t) / N);
    109 
    110 
    111     }
    112 
    113     //cout << "Hello world!" << endl;
    114     return 0;
    115 }
    View Code
  • 相关阅读:
    oauth2的简单介绍以及应用
    springboot查询数据库,js实现二级联动效果
    PHP的简单了解
    JavaScript基础13——面向对象
    JavaScript基础12——运动
    JavaScript基础10——正则
    JavaScript基础09——事件驱动
    JavaScript基础08——DOM
    JavaScript基础07——BOM
    JavaScript基础06——Math对象和日期对象
  • 原文地址:https://www.cnblogs.com/hyxsolitude/p/3724592.html
Copyright © 2011-2022 走看看