题目:已知 sqrt (2)约等于 1.414,要求不用数学库,求 sqrt (2)精确到小数点后 10 位。
考察点
- 基础算法的灵活应用能力(二分法学过数据结构的同学都知道,但不一定往这个方向考虑;如果学过数值计算的同学,应该还要能想到牛顿迭代法并解释清楚)
- 退出条件设计
二分法
1. 已知 sqrt(2)约等于 1.414,那么就可以在(1.4, 1.5)区间做二分
查找,如: a) high=>1.5 b) low=>1.4 c) mid => (high+low)/2=1.45 d) 1.45*1.45>2 ? high=>1.45 : low => 1.45 e) 循环到 c)
2. 退出条件
a) 前后两次的差值的绝对值<=0.0000000001, 则可退出
const double EPSILON = 0.0000000001;
double sqrt2() {
double low = 1.4, high = 1.5;
double mid = (low + high) / 2;
while (high - low > EPSILON) {
if (mid * mid > 2) {
high = mid;
} else {
low = mid;
}
mid = (high + low) / 2;
}
return mid;
}
牛顿迭代法
原理:
其实牛顿开方法是牛顿迭代法在开平方上的应用,牛顿迭代法同时也能快速逼近很多方程的解,自然可以用来开任意平方。
牛顿迭代法的原理很简单,其实是根据f(x)在x0附近的值和斜率,估计f(x)和x轴的交点,看下面的动态图:
【用牛顿迭代法开平方】
1.牛顿迭代法的公式为:
xn+1 = xn-f(xn)/f'(xn)
对于本题,需要求解的问题为:f(x)=x2-2 的零点
EPSILON = 0.1 ** 10
def newton(x):
if abs(x ** 2 - 2) > EPSILON:
return newton(x - (x ** 2 - 2) / (2 * x))
else:
return x