zoukankan      html  css  js  c++  java
  • Matlab基本函数-contrast函数

    1、contrast函数:调整灰色对比度

    2、用法说明:

    (1)cmap = contrast(x) 函数返回一灰度色图cmap,该色图与当前色图x有相同的维数

    (2)cmap = contrast(x,m) 函数返回维数为m×3的当前色图x的灰度色图cmap

    3、实例

    (1)显示框图

    >> load clown
    >> cmap1 = contrast(X)
    
    cmap1 =
    
        0.1249    0.1249    0.1249
        0.2387    0.2387    0.2387
        0.2636    0.2636    0.2636
        0.2650    0.2650    0.2650
        0.3009    0.3009    0.3009
        0.3093    0.3093    0.3093
        0.3700    0.3700    0.3700
        0.3770    0.3770    0.3770
        0.4078    0.4078    0.4078
        0.4426    0.4426    0.4426
        0.4633    0.4633    0.4633
        0.4711    0.4711    0.4711
        0.4794    0.4794    0.4794
        0.4907    0.4907    0.4907
        0.4918    0.4918    0.4918
        0.5005    0.5005    0.5005
        0.5081    0.5081    0.5081
        0.5586    0.5586    0.5586
        0.5600    0.5600    0.5600
        0.5603    0.5603    0.5603
        0.6005    0.6005    0.6005
        0.6216    0.6216    0.6216
        0.6223    0.6223    0.6223
        0.6399    0.6399    0.6399
        0.6539    0.6539    0.6539
        0.6547    0.6547    0.6547
        0.6554    0.6554    0.6554
        0.6626    0.6626    0.6626
        0.6856    0.6856    0.6856
        0.7062    0.7062    0.7062
        0.7072    0.7072    0.7072
        0.7097    0.7097    0.7097
        0.7447    0.7447    0.7447
        0.7638    0.7638    0.7638
        0.7831    0.7831    0.7831
        0.7944    0.7944    0.7944
        0.7948    0.7948    0.7948
        0.7953    0.7953    0.7953
        0.7963    0.7963    0.7963
        0.7971    0.7971    0.7971
        0.7990    0.7990    0.7990
        0.7991    0.7991    0.7991
        0.8181    0.8181    0.8181
        0.8377    0.8377    0.8377
        0.8380    0.8380    0.8380
        0.8481    0.8481    0.8481
        0.8592    0.8592    0.8592
        0.8725    0.8725    0.8725
        0.8726    0.8726    0.8726
        0.8762    0.8762    0.8762
        0.8822    0.8822    0.8822
        0.8824    0.8824    0.8824
        0.8827    0.8827    0.8827
        0.8862    0.8862    0.8862
        0.9098    0.9098    0.9098
        0.9106    0.9106    0.9106
        0.9174    0.9174    0.9174
        0.9309    0.9309    0.9309
        0.9310    0.9310    0.9310
        0.9379    0.9379    0.9379
        0.9744    0.9744    0.9744
        0.9794    0.9794    0.9794
        0.9984    0.9984    0.9984
        1.0000    1.0000    1.0000

    (2)显示图像

    >> image(X)


    (3)调整图片的灰度

    >> colormap(cmap1)

    (4)cmap = contrast(x,m)

    >> cmap1 = contrast(X,100)
    
    cmap1 =
    
        0.1248    0.1248    0.1248
        0.2385    0.2385    0.2385
        0.2412    0.2412    0.2412
        0.2412    0.2412    0.2412
        0.2635    0.2635    0.2635
        0.2649    0.2649    0.2649
        0.3008    0.3008    0.3008
        0.3092    0.3092    0.3092
        0.3092    0.3092    0.3092
        0.3152    0.3152    0.3152
        0.3698    0.3698    0.3698
        0.3768    0.3768    0.3768
        0.4076    0.4076    0.4076
        0.4076    0.4076    0.4076
        0.4394    0.4394    0.4394
        0.4424    0.4424    0.4424
        0.4631    0.4631    0.4631
        0.4709    0.4709    0.4709
        0.4709    0.4709    0.4709
        0.4793    0.4793    0.4793
        0.4841    0.4841    0.4841
        0.4905    0.4905    0.4905
        0.4916    0.4916    0.4916
        0.4917    0.4917    0.4917
        0.5003    0.5003    0.5003
        0.5080    0.5080    0.5080
        0.5560    0.5560    0.5560
        0.5584    0.5584    0.5584
        0.5598    0.5598    0.5598
        0.5598    0.5598    0.5598
        0.5602    0.5602    0.5602
        0.5968    0.5968    0.5968
        0.6003    0.6003    0.6003
        0.6215    0.6215    0.6215
        0.6215    0.6215    0.6215
        0.6221    0.6221    0.6221
        0.6398    0.6398    0.6398
        0.6526    0.6526    0.6526
        0.6538    0.6538    0.6538
        0.6538    0.6538    0.6538
        0.6545    0.6545    0.6545
        0.6553    0.6553    0.6553
        0.6625    0.6625    0.6625
        0.6638    0.6638    0.6638
        0.6638    0.6638    0.6638
        0.6855    0.6855    0.6855
        0.7060    0.7060    0.7060
        0.7071    0.7071    0.7071
        0.7096    0.7096    0.7096
        0.7096    0.7096    0.7096
        0.7345    0.7345    0.7345
        0.7446    0.7446    0.7446
        0.7637    0.7637    0.7637
        0.7830    0.7830    0.7830
        0.7937    0.7937    0.7937
        0.7937    0.7937    0.7937
        0.7943    0.7943    0.7943
        0.7947    0.7947    0.7947
        0.7951    0.7951    0.7951
        0.7962    0.7962    0.7962
        0.7962    0.7962    0.7962
        0.7965    0.7965    0.7965
        0.7970    0.7970    0.7970
        0.7989    0.7989    0.7989
        0.7990    0.7990    0.7990
        0.7990    0.7990    0.7990
        0.8180    0.8180    0.8180
        0.8234    0.8234    0.8234
        0.8376    0.8376    0.8376
        0.8379    0.8379    0.8379
        0.8379    0.8379    0.8379
        0.8480    0.8480    0.8480
        0.8486    0.8486    0.8486
        0.8592    0.8592    0.8592
        0.8724    0.8724    0.8724
        0.8725    0.8725    0.8725
        0.8725    0.8725    0.8725
        0.8762    0.8762    0.8762
        0.8820    0.8820    0.8820
        0.8822    0.8822    0.8822
        0.8823    0.8823    0.8823
        0.8823    0.8823    0.8823
        0.8827    0.8827    0.8827
        0.8861    0.8861    0.8861
        0.8884    0.8884    0.8884
        0.9098    0.9098    0.9098
        0.9098    0.9098    0.9098
        0.9106    0.9106    0.9106
        0.9173    0.9173    0.9173
        0.9300    0.9300    0.9300
        0.9309    0.9309    0.9309
        0.9309    0.9309    0.9309
        0.9310    0.9310    0.9310
        0.9379    0.9379    0.9379
        0.9744    0.9744    0.9744
        0.9761    0.9761    0.9761
        0.9761    0.9761    0.9761
        0.9794    0.9794    0.9794
        0.9984    0.9984    0.9984
        1.0000    1.0000    1.0000


  • 相关阅读:
    golang垃圾回收和SetFinalizer
    读《我编程,我快乐--程序员职业规划之道》
    golang cache--go-cache
    golang web framework--Martini
    golang http proxy反向代理
    php 设计模式之简单工厂模式
    php 设计模式之责任链模式
    什么是反向索引
    ip地址二进制转十进制
    架构师之路
  • 原文地址:https://www.cnblogs.com/hzcya1995/p/13315619.html
Copyright © 2011-2022 走看看