zoukankan      html  css  js  c++  java
  • 你知道数据中台,但你肯定没听过报表中台,我靠它征服百万数据人

    文|数据人生

    文章虽短,但都是干货。

    来和大家聊一个很重要,也是企业现在普遍的痛点:

    业务部门会抱怨报表数据不够及时和准确,IT部门则会抱怨业务部门需求太多太急,这种矛盾在大部分企业都会存在,这些问题的解决不是仅靠资源的投入、技术的提升能解决的,往往涉及到企业组织、机制和流程等更深层次的问题。

    你知道数据中台,但你肯定没听过报表中台,我靠它征服百万数据人

    那如何提升做报表的效率?我从4个方面提出了建议。

    1、组织优化:在业务部门建立小IT团队

    业务部门提报表需求,IT部门实现报表需求的“授人以鱼”的传统支撑模式速度是很难起来的,因为管理成本太高(比如需求分析、流程审批、资源分配、运维调度等等),如果业务部门能自己进行报表开发,则可以从根本上解决问题。

    业务部门不可能成为IT部门,但业务部门却可以拥有自己的小IT团队,从而自给自足的解决报表开发问题,这个在数据中台建立起来后变得非常现实。

    数据中台可以为业务部门的小IT团队提供三种能力:数据仓库模型、开发工具和BI工具。其中数据仓库模型解决报表数据生成效率问题,数据开发工具解决业务人员操控数据的问题,BI工具解决业务人员设计和发布报表的问题。

    中台确保了业务部门的小IT既不会导致IT系统的重复建设问题,也能给予业务部门足够的自由度和自主权。

    现实中最大的挑战其实不在技术上,而是在观念上,让业务人员自力更生并不是那么容易,即使你提供了很好的平台或工具,但的确“在业务部门建立小IT”是很好的方法。

    正如现在的HRBP一样,ITBP也该出现了。

    你知道数据中台,但你肯定没听过报表中台,我靠它征服百万数据人

    FineReport做的报表

    2、业务归口:实现报表的集中管理

    报表的口径混乱导致业务部门花费巨大的精力去核对数据,IT部门为了配合数据核对也需要投入巨大的成本,这是企业报表支撑效率低下的一个原因,我们不是在做报表的路上,就是在核对报表的路上。

    报表口径混乱的根源当然不是IT问题,而是业务问题。公司的某个业务也许可以归口到某个部门管理,但并不代表这个业务的报表有了归口部门管理,任何跟这个业务相关的组织或个人都是有权利向IT部门提出该业务的报表需求的,这是成千上万报表产生的一个原因,也是口径混乱的根源。

    比如集团总部要看省公司维度的的报表,而省公司要看地市公司维度,虽然大家关注的是同一个业务,但你会发现IT不得重复去实现一遍。

    但只要有重复实现就会产生不一致问题,因为不同的组织或个人对于同一事务的理解肯定有偏差,特别是业务口径,一字之差,谬以千里,即使业务口径一致,实现方式的不同也会导致不一致。

    企业与其花费巨大的精力去核对报表,还不如针对每个业务的报表去明确下归口管理部门,跟IT部门做个协同,比如不允许IT部门接收非归口管理部门的报表需求,在这个前提下IT部门去开展报表治理的工作才有些意义,否则垃圾还在不停的进来,怎么治?

    你知道数据中台,但你肯定没听过报表中台,我靠它征服百万数据人

    现实中IT往往成了背锅侠,这是挺扯淡的事情,只能说IT在很多企业太弱势了,业务部门从来就不曾真正的解决问题,它永远是要求当下IT必须给我正确的数据,至于如何才能从根本上解决问题,下次再说吧。

    3、指标统一:实现报表的中台能力

    有了报表的业务归口的前提,才轮得上去谈技术的解决方案。有人总是强调指标的神奇作用,但如果没有业务管理上的支持,说用指标的方式来提升报表的开发效率也是美丽的泡沫,长远来讲难以坚持。

    从纯技术的角度讲,报表都是由指标组成,只要指标能够标准化,理论上任何新增报表都可以由标准化的指标组装生成,这是典型的中台化的思想。可惜的是,指标不是功能,其牵涉的维度和粒度太多,变化太快,基于指标搭建的这个报表中台就有点脆弱。

    你知道数据中台,但你肯定没听过报表中台,我靠它征服百万数据人

    报表的中台化实现方案可以参考阿里的的数据中台,其对于指标的实现有严格的控制,但前提是需要公司顶层的支持,因为整个数据的支撑模式将发生巨大的变化,开始的时候成本是巨大的,而未来则是不确定的。

    比如当业务人员提一张报表需求的时候,IT会先评估下是否有现成的指标可以支撑,如果没有,则要先实现这些指标,而为了确保这些指标的共享性,指标的设计和实现过程将花费更多的时间和精力。

    但企业有多大的耐心呢?

    在市场响应的及时性和IT的可复用性之间,你觉得它会做出何种选择?因此笔者看到了太多指标化神坛的垮掉。

    无论如何,指标化是提升报表效率的利器,如果你能坚持到最后,那一定是很好的,但千万要获得企业的支持,这不是IT部门能自己搞定的事情,更不能两边骑墙。

    你知道数据中台,但你肯定没听过报表中台,我靠它征服百万数据人

    4、人才引入:拓展做报表的边界

    再好的组织、机制、技术的设计,如果没有优秀的人去落地实施,一切就都成了空。要提升报表效率的最简单方法就找靠谱的人去做。

    比如报表数据稽核吧,专家和新人的效率就不可同日而语,在最危急的时候,leader总是想到团队最靠谱的人来搞定数据质量问题。

    因此,要提升做报表的效率,你首先得看看最优秀的人是否被安放在了这个岗位上,牛逼的表哥做报表能做出不同的境界。

    他不仅可以快速的领会业务人员的意图,准确的进行报表的评估及高效的进行数据质量稽核等等,还会主动进行报表体系架构的调整、数据模型的优化及脚本效率的提升等等。

    但在一支数据团队,我们往往不愿意把最优秀的人放去做报表,即使他现在在做报表,你也会把他调离去做更高level的事情。

    现在提做大数据,大家首先想到的就是平台、建模、挖掘及应用,没有人会将报表当成自己未来的专业。

    倒并不是说报表不重要,而是做报表往往处于价值创造的中间地带,其在业务上的贡献大多被过顶传球了,很难有亮点可言,而在技术上的贡献,似乎也很少。

    这里笔者要为报表的价值和内涵证明一下。

    你知道数据中台,但你肯定没听过报表中台,我靠它征服百万数据人

    价值的角度看,报表是衡量企业运营正常与否的晴雨表,在企业的决策支持方面发挥着巨大作用,其重要性往往远超那些模型和标签,只是大家习惯了而已。

    事实上,只要报表效率提升那么一点点,其创造的价值就会很大,比如财务报表提个速,虽然可能是润物细无声的。

    内涵的角度看,表哥往往将自己局限在了设想的专业领域,但事实上,要做好报表,牵扯到了组织、机制、流程、中台、技术等各个方面的问题,正如我前面提到的内容一样,我们还有太多技术含量很高的事情要去做,只是挑战都很大。

    谁都会做报表,但要做好的确很难。

  • 相关阅读:
    LeetCode Missing Number (简单题)
    LeetCode Valid Anagram (简单题)
    LeetCode Single Number III (xor)
    LeetCode Best Time to Buy and Sell Stock II (简单题)
    LeetCode Move Zeroes (简单题)
    LeetCode Add Digits (规律题)
    DependencyProperty深入浅出
    SQL Server存储机制二
    WPF自定义RoutedEvent事件示例代码
    ViewModel命令ICommand对象定义
  • 原文地址:https://www.cnblogs.com/hzcya1995/p/13325546.html
Copyright © 2011-2022 走看看