zoukankan      html  css  js  c++  java
  • SPOJ 8372. Triple Sums

    8372. Triple Sums

    Problem code: TSUM

    You're given a sequence s of N distinct integers.
    Consider all the possible sums of three integers from the sequence at three different indicies.
    For each obtainable sum output the number of different triples of indicies that generate it.

    Constraints:

    N <= 40000, |si| <= 20000

    Input

    The first line of input contains a single integer N.
    Each of the next N lines contain an element of s.

    Output

    Print the solution for each possible sum in the following format:
    sum_value : number_of_triples

    Smaller sum values should be printed first.

    Example

    Input:

    5
    -1
    2
    3
    0
    5
    Output:
    1 : 1
    2 : 1
    4 : 2
    5 : 1
    6 : 1
    7 : 2
    8 : 1
    10 : 1

    Explanation:
    4 can be obtained using triples ( 0, 1, 2 ) and ( 0, 3, 4 ).
    7 can be obtained using triples ( 0, 2, 4 ) and ( 1, 3, 4 ).

    Note: a triple is considered the same as any of its permutations.


    用一个系数为该位指数在S中出现次数的多项式(P)来表示某位上指数的一次表示方式,那么三次表示方式就是(P^3),然后由于要求三元组的元素在S中的序数不同,容斥原理判重即可。

    #include <bits/stdc++.h>
    using namespace std;
    typedef complex<long double> Complex;
    
    const int maxn = 1 << 17;
    const int base = 20000;
    void DFT(Complex *a, int N, int flag) {
        for(int i = (N >> 1), j = 1, k; j < N; i ^= k, ++j) {
            if(i < j) swap(a[i], a[j]);
            for(k = (N >> 1); i & k; i ^= k, k >>= 1);
        }
        for(int n = 2; n <= N; n <<= 1) {
            Complex Wn = Complex(cos(flag * M_PI * 2 / n), sin(flag * M_PI * 2 / n));
            for(int i = 0; i < N; i += n) {
                Complex W = Complex(1.0, 0.0);
                for(int j = i; j < i + (n >> 1); W = W * Wn, ++j) {
                    Complex u = a[j], v = W * a[j + (n >> 1)];
                    a[j] = u + v;
                    a[j + (n >> 1)] = u - v;
                }
            }
        }
    }
    int a[maxn], b[maxn], c[maxn];
    Complex A[maxn], B[maxn], C[maxn];
    int main() {
        int n;
        scanf("%d", &n);
        for(int i = 1, x; i <= n; ++i) {
            scanf("%d", &x);
            x += base;
            ++a[x];
            ++b[x + x];
            ++c[x + x + x];
        }
        int N = maxn;
        for(int i = 0; i < N; ++i) {
            A[i] = a[i], B[i] = b[i];
        }
        DFT(A, N, 1);
        DFT(B, N, 1);
        for(int i = 0; i < N; ++i) {
            C[i] = A[i] * (A[i] * A[i] - 3.0l * B[i]);
        }
        DFT(C, N, -1);
        for(int i = 0; i < N; ++i) {
            long long ans = ((long long)(C[i].real() / N + 0.5) + 2 * c[i]) / 6;
            if(ans != 0) {
                printf("%d : %lld
    ", i - 60000, ans);
            }
        }
        return 0;
    }

  • 相关阅读:
    Request
    HTTP
    mysql递归查询函数
    redis 6.0.9配置文件详解
    java对数据进行加密、解密
    java Base64编码、解码
    nginx基础使用
    linux指令笔记
    Spring 常用注解粗陋看法
    docker 已有容器修改容器配置
  • 原文地址:https://www.cnblogs.com/hzf-sbit/p/4009455.html
Copyright © 2011-2022 走看看