zoukankan      html  css  js  c++  java
  • LeetCode 169. Majority Element

    问题:

    Given an array of size n, find the majority element. The majority element is the element that appears more than ⌊ n/2 ⌋ times.

    You may assume that the array is non-empty and the majority element always exist in the array.

    分析:

    1 计数?

    2 HashMap

    first try:

    import java.util.Map;
    import java.util.HashMap;
    
    class Solution {
        public int majorityElement(int[] nums) {
            Map<Integer, Integer> elementCountMap = new HashMap<Integer, Integer>();
            
            for(int i=0; i<nums.length; i++) {
                if(elementCountMap.containsKey(nums[i])) {
                    int count = elementCountMap.get(nums[i]);
                    elementCountMap.put(nums[i], count++);
                } else {
                    elementCountMap.put(nums[i], 1);
                }
            }//
            
            int majorElement = 0;
            for(Map.Entry entry : elementCountMap.entrySet()) {
                if ((nums.length/2)<(Integer)entry.getValue()) {
                    majorElement = (Integer)entry.getKey();
                }
            }
            
            return majorElement;
        }
    }

    result:

    Submission Result: Wrong Answer 
    Input: [2,2]
    Output: 0
    Expected: 2

    anylysis:

    找了很久也找不到错误。甚至还处处println debug,后来发现了犯了低级错误! count++啊啊啊啊

    second try:

    import java.util.Map;
    import java.util.HashMap;
    
    class Solution {
        public int majorityElement(int[] nums) {
            Map<Integer, Integer> elementCountMap = new HashMap<Integer, Integer>();
            
            for(int i=0; i<nums.length; i++) {
                if(elementCountMap.containsKey(nums[i])) {
                    int count = elementCountMap.get(nums[i]);
                    elementCountMap.put(nums[i], ++count);
                } else {
                    elementCountMap.put(nums[i], 1);
                }
            }//
            
            int majorElement = 0;
            for(Map.Entry entry : elementCountMap.entrySet()) {
                if ((nums.length/2)<(Integer)entry.getValue()) {
                    majorElement = (Integer)entry.getKey();
                }
            }
            
            return majorElement;
        }
    }

    result:

    third try:

    //import java.util.Map;
    import java.util.HashMap;
    
    class Solution {
        public int majorityElement(int[] nums) {
            HashMap<Integer, Integer> elementCountMap = new HashMap<Integer, Integer>();
            
            for(int i=0; i<nums.length; i++) {
                if(elementCountMap.containsKey(nums[i])) {
                    int count = elementCountMap.get(nums[i]);
                    elementCountMap.put(nums[i], ++count);
                } else {
                    elementCountMap.put(nums[i], 1);
                }
            }//
            
            int majorElement = 0;
            for(Map.Entry entry : elementCountMap.entrySet()) {
                if ((nums.length/2)<(Integer)entry.getValue()) {
                    majorElement = (Integer)entry.getKey();
                }
            }
            
            return majorElement;
        }
    }

    result:

    分析:

    怎么效率还变差了。。。

    try again:

    //import java.util.Map;
    import java.util.HashMap;
    
    class Solution {
        public int majorityElement(int[] nums) {
            HashMap<Integer, Integer> elementCountMap = new HashMap<Integer, Integer>();
            
            for(int i=0; i<nums.length; i++) {
                if(elementCountMap.containsKey(nums[i])) {
                    int count = elementCountMap.get(nums[i]);
                    elementCountMap.put(nums[i], ++count);
                } else {
                    elementCountMap.put(nums[i], 1);
                }
            }//
            
            int majorElement = 0;
            for(Map.Entry entry : elementCountMap.entrySet()) {
                if ((nums.length/2)<(Integer)entry.getValue()) {
                    majorElement = (Integer)entry.getKey();
                    return majorElement;
                }
            }
            
            return majorElement;
        }
    }


    result:

    精妙算法BM投票算法:

    分析:

    是流算法的一个prototypical example:

    In computer science, streaming algorithms are algorithms for processing data streams in which the input is presented as a sequence of items and can be examined in only a few passes (typically just one). In most models, these algorithms have access to limited memory (generally logarithmic in the size of and/or the maximum value in the stream). They may also have limited processing time per item.

    try:

    class Solution {
        public int majorityElement(int[] nums) {
            int count=0;
            int currentMajor=nums[0];
            for(int i=0;i<nums.length;i++){
                if(nums[i]==currentMajor){
                    count++;
                }else{
                    count--;
                }
                
                if(count==0 && i+1<nums.length){
                    currentMajor=nums[i+1];
                }
            }
            
            return currentMajor;
        }
    }

    result:

    conclusion:

  • 相关阅读:
    jQuery火箭图标返回顶部代码
    jQuery火箭图标返回顶部代码
    jQuery火箭图标返回顶部代码
    jQuery火箭图标返回顶部代码
    jQuery火箭图标返回顶部代码
    小花梨的三角形(暴力上下扫三角形)
    调手表(bfs)
    Educational Codeforces Round 65 (Rated for Div. 2)(ACD)B是交互题,不怎么会
    C. News Distribution(并查集)
    Codeforces Round #560 (Div. 3)A-E
  • 原文地址:https://www.cnblogs.com/hzg1981/p/8874454.html
Copyright © 2011-2022 走看看