zoukankan      html  css  js  c++  java
  • SQLServer索引

    一、重要内容汇总:

      1.SQLServer索引有两种,聚集索引和非聚集索引;

      2.聚集索引存储记录是物理上连续存在,而非聚集索引是逻辑上的连续,物理存储并不连续。

      3.聚集索引一个表只能有一个,而非聚集索引一个表可以存在多个。

      4.创建索引语法:CREATE [UNIQUE][CLUSTERED | NONCLUSTERED]  INDEX  index_name  ON {table_name | view_name} [WITH [index_property [,....n]]

        事例:建为pawn_ddhxx 表建一个索引名为Clust_ddhxx_bh,索引列为bh的聚集索引,create Clustered index  Clust_ddhxx_bh on pawn_ddhxx (bh)

      5.删除索引语法:DROP INDEX table_name.index_name[,table_name.index_name]

        事例:drop index pawn_fk_dwdjbdw.Clust_dw_bh 

    二、内容详述

    1.1 什么是索引?

      索引主要目的是提高了SQL Server系统的性能,加快数据的查询速度与减少系统的响应时间。

    下面举两个简单的例子:

      图书馆的例子:一个图书馆那么多书,怎么管理呢?建立一个字母开头的目录,例如:a开头的书,在第一排,b开头的在第二排,这样在找什么书就好说了,这个就是一个聚集索引,可是很多人借书找某某作者的,不知道书名怎么办?图书管理员在写一个目录,某某作者的书分别在第几排,第几排,这就是一个非聚集索引。

    1.2 索引的存储机制

      首先,无索引的表,查询时,是按照顺序存续的方法扫描每个记录来查找符合条件的记录,这样效率十分低下。举个例子,如果我们将字典的汉字随即打乱,没有前面的按照拼音或者部首查询,那么我们想找一个字,按照顺序的方式去一页页的找,这样效率低下。

      聚集索引和非聚集索引的根本区别是表记录的排列顺序和与索引的排列顺序是否一致。

      聚集索引就是在数据库被开辟一个物理空间存放他的排列的值,例如1-100,所以当插入数据时,他会重新排列整个整个物理空间,而非聚集索引其实可以看作是一个含有聚集索引的表,他只仅包含原表中非聚集索引的列和指向实际物理表的指针。他只记录一个指针,其实就有点和堆栈差不多的感觉了。

    1.3建立索引的原则

      1) 定义主键的数据列一定要建立索引。

      2) 定义有外键的数据列一定要建立索引。

      3) 对于经常查询的数据列最好建立索引。

      4) 对于需要在指定范围内的快速或频繁查询的数据列;

      5) 经常用在WHERE子句中的数据列。

      6) 经常出现在关键字order by、group by、distinct后面的字段。如果建立的是复合索引,索引的字段顺序要和这些关键字后面的字段顺序一致,否则索引不会被使用。

      7) 对于那些查询中很少涉及的列,重复值比较多的列不要建立索引。

      8) 对于定义为text、image和bit的数据类型的列不要建立索引。

      9) 对于经常存取的列避免建立索引 

      9) 限制表上的索引数目。对一个存在大量更新操作的表,所建索引的数目一般不要超过3个,最多不要超过5个。索引虽说提高了访问速度,但太多索引会影响数据的更新操作。

      10) 对复合索引,按照字段在查询条件中出现的频度建立索引。在复合索引中,记录首先按照第一个字段排序。对于在第一个字段上取值相同的记录,系统再按照第二个字段的取值排序,以此类推。因此只有复合索引的第一个字段出现在查询条件中,该索引才可能被使用,因此将应用频度高的字段,放置在复合索引的前面,会使系统最大可能地使用此索引,发挥索引的作用。

    1.4 如何创建索引

      1.41 创建索引的语法:

      CREATE [UNIQUE][CLUSTERED | NONCLUSTERED]  INDEX  index_name  ON {table_name | view_name} [WITH [index_property [,....n]]

    说明:

    UNIQUE: 建立唯一索引。

    CLUSTERED: 建立聚集索引。

    NONCLUSTERED: 建立非聚集索引。

    Index_property: 索引属性。

     UNIQUE索引既可以采用聚集索引结构,也可以采用非聚集索引的结构,如果不指明采用的索引结构,则SQL Server系统默认为采用非聚集索引结构。

      1.42 删除索引语法:

    DROP INDEX table_name.index_name[,table_name.index_name]

    说明:table_name: 索引所在的表名称。

    index_name : 要删除的索引名称。

      1.43 显示索引信息:

    使用系统存储过程:sp_helpindex 查看指定表的索引信息。

    执行代码如下:

    Exec sp_helpindex book1;

     

    1.5 索引实战(摘抄)

      不良的SQL往往来自于不恰当的索引设计、不充份的连接条件和不可优化的where子句。在对它们进行适当的优化后,其运行速度有了明显地提高!

    下面从这三个方面分别进行总结:

    为了更直观地说明问题,所有实例中的SQL运行时间均经过测试,不超过1秒的均表示为(< 1秒)。----

    测试环境: 主机:HP LH II---- 主频:330MHZ---- 内存:128兆----

    操作系统:Operserver5.0.4----

    数据库:Sybase11.0.3

     

    第一方面:不合理的索引设计----

    例:表record有620000行,试看在不同的索引下,下面几个 SQL的运行情况:

    ---- 1.在date上建有一非个群集索引

    select count(*) from record where date >'19991201' and date < '19991214'and amount >2000 (25秒)

    select date ,sum(amount) from record group by date(55秒)

    select count(*) from record where date >'19990901' and place in ('BJ','SH') (27秒)

    ---- 分析:----

    date上有大量的重复值,在非群集索引下,数据在物理上随机存放在数据页上,在范围查找时,必须执行一次表扫描才能找到这一范围内的全部行。

    ---- 2.在date上的一个群集索引

    select count(*) from record where date >'19991201' and date < '19991214' and amount >2000 (14秒)

    select date,sum(amount) from record group by date(28秒)

    select count(*) from record where date >'19990901' and place in ('BJ','SH')(14秒)

    ---- 分析:---- 在群集索引下,数据在物理上按顺序在数据页上,重复值也排列在一起,因而在范围查找时,可以先找到这个范围的起末点,且只在这个范围内扫描数据页,避免了大范围扫描,提高了查询速度。

    ---- 3.在place,date,amount上的组合索引

    select count(*) from record where date >'19991201' and date < '19991214' and amount >2000 (26秒)

    select date,sum(amount) from record group by date(27秒)

    select count(*) from record where date >'19990901' and place in ('BJ, 'SH')(< 1秒)

    ---- 分析:---- 这是一个不很合理的组合索引,因为它的前导列是place,第一和第二条SQL没有引用place,因此也没有利用上索引;第三个SQL使用了place,且引用的所有列都包含在组合索引中,形成了索引覆盖,所以它的速度是非常快的。

    ---- 4.在date,place,amount上的组合索引

    select count(*) from record where date >'19991201' and date < '19991214' and amount >2000(< 1秒)

    select date,sum(amount) from record group by date(11秒)

    select count(*) from record where date >'19990901' and place in ('BJ','SH')(< 1秒)

    ---- 分析:---- 这是一个合理的组合索引。它将date作为前导列,使每个SQL都可以利用索引,并且在第一和第三个SQL中形成了索引覆盖,因而性能达到了最优。

    ---- 5.总结:----

    缺省情况下建立的索引是非群集索引,但有时它并不是最佳的;合理的索引设计要建立在对各种查询的分析和预测上。

    一般来说:

    ①.有大量重复值、且经常有范围查询(between, >,< ,>=,< =)和order by、group by发生的列,可考虑建立群集索引;

    ②.经常同时存取多列,且每列都含有重复值可考虑建立组合索引;

    ③.组合索引要尽量使关键查询形成索引覆盖,其前导列一定是使用最频繁的列。

     

    第二方面:不充份的连接条件:

    例:表card有7896行,在card_no上有一个非聚集索引,表account有191122行,在account_no上有一个非聚集索引,试看在不同的表连接条件下,两个SQL的执行情况:

    select sum(a.amount) from account a,card b where a.card_no = b.card_no(20秒)

    select sum(a.amount) from account a,card b where a.card_no = b.card_no and a.account_no=b.account_no(< 1秒)

    ---- 分析:---- 在第一个连接条件下,最佳查询方案是将account作外层表,card作内层表,利用card上的索引,其I/O次数可由以下公式估算为:

    外层表account上的22541页+(外层表account的191122行*内层表card上对应外层表第一行所要查找的3页)=595907次I/O

    在第二个连接条件下,最佳查询方案是将card作外层表,account作内层表,利用account上的索引,其I/O次数可由以下公式估算为:外层表card上的1944页+(外层表card的7896行*内层表account上对应外层表每一行所要查找的4页)= 33528次I/O

    可见,只有充份的连接条件,真正的最佳方案才会被执行。

    总结:

    1.多表操作在被实际执行前,查询优化器会根据连接条件,列出几组可能的连接方案并从中找出系统开销最小的最佳方案。连接条件要充份考虑带有索引的表、行数多的表;内外表的选择可由公式:外层表中的匹配行数*内层表中每一次查找的次数确定,乘积最小为最佳方案。

    2.查看执行方案的方法-- 用set showplanon,打开showplan选项,就可以看到连接顺序、使用何种索引的信息;想看更详细的信息,需用sa角色执行dbcc(3604,310,302)。

     

    第三方面:不可优化的where子句

    1.例:下列SQL条件语句中的列都建有恰当的索引,但执行速度却非常慢:

    select * from record wheresubstring(card_no,1,4)='5378'(13秒)

    select * from record whereamount/30< 1000(11秒)

    select * from record whereconvert(char(10),date,112)='19991201'(10秒)

    分析:

    where子句中对列的任何操作结果都是在SQL运行时逐列计算得到的,因此它不得不进行表搜索,而没有使用该列上面的索引;

    如果这些结果在查询编译时就能得到,那么就可以被SQL优化器优化,使用索引,避免表搜索,因此将SQL重写成下面这样:

    select * from record where card_no like'5378%'(< 1秒)

    select * from record where amount< 1000*30(< 1秒)

    select * from record where date= '1999/12/01'(< 1秒)

    你会发现SQL明显快起来!

    2.例:表stuff有200000行,id_no上有非群集索引,请看下面这个SQL:

    select count(*) from stuff where id_no in('0','1')(23秒)

    分析:---- where条件中的'in'在逻辑上相当于'or',所以语法分析器会将in ('0','1')转化为id_no ='0' or id_no='1'来执行。

    我们期望它会根据每个or子句分别查找,再将结果相加,这样可以利用id_no上的索引;

    但实际上(根据showplan),它却采用了"OR策略",即先取出满足每个or子句的行,存入临时数据库的工作表中,再建立唯一索引以去掉重复行,最后从这个临时表中计算结果。因此,实际过程没有利用id_no上索引,并且完成时间还要受tempdb数据库性能的影响。

    实践证明,表的行数越多,工作表的性能就越差,当stuff有620000行时,执行时间竟达到220秒!还不如将or子句分开:

    select count(*) from stuff where id_no='0'select count(*) from stuff where id_no='1'

    得到两个结果,再作一次加法合算。因为每句都使用了索引,执行时间只有3秒,在620000行下,时间也只有4秒。

    或者,用更好的方法,写一个简单的存储过程:

    create proc count_stuff asdeclare @a intdeclare @b intdeclare @c intdeclare @d char(10)beginselect @a=count(*) from stuff where id_no='0'select @b=count(*) from stuff where id_no='1'endselect @c=@a+@bselect @d=convert(char(10),@c)print @d

    直接算出结果,执行时间同上面一样快!

     

    ---- 总结:---- 可见,所谓优化即where子句利用了索引,不可优化即发生了表扫描或额外开销。

    1.任何对列的操作都将导致表扫描,它包括数据库函数、计算表达式等等,查询时要尽可能将操作移至等号右边。

    2.in、or子句常会使用工作表,使索引失效;如果不产生大量重复值,可以考虑把子句拆开;拆开的子句中应该包含索引。

    3.要善于使用存储过程,它使SQL变得更加灵活和高效。

    从以上这些例子可以看出,SQL优化的实质就是在结果正确的前提下,用优化器可以识别的语句,充份利用索引,减少表扫描的I/O次数,尽量避免表搜索的发生。其实SQL的性能优化是一个复杂的过程,上述这些只是在应用层次的一种体现,深入研究还会涉及数据库层的资源配置、网络层的流量控制以及操作系统层的总体设计。

     

    索引实战是摘抄网友的文章,引用地址:http://blog.csdn.net/gprime/article/details/1687930

  • 相关阅读:
    Lombok Pojo默认初始值问题
    spring boot打包以及centos下部署
    Spring事件监听ApplicationListener源码流程分析
    synchronized是什么,用法及原理
    Spring动态切换数据源及事务
    linux环境中关闭tomcat,通过shutdown.sh无法彻底关闭--线程池
    LVS之DR模式
    LVS之ipvsadm命令
    LVS之NAT模式
    tcpdump抓包命令
  • 原文地址:https://www.cnblogs.com/hzjdpawn/p/11683590.html
Copyright © 2011-2022 走看看