树形DP
加分二叉树 洛谷P1040
注意中序遍历的特点:当根节点编号k时,编号小于k的都在其左子树上,编号大于k的都在右子树
转移方程 f[i,j]=max{f[i,k-1]*f[k+1,j]+d[k]} ,f[i,j]表示中序遍历i到j的二叉树最大加分 时间复杂度O(N3)
#include<iostream> #include<cstdio> #include<string> #include<algorithm> #include<queue> #include<set> #include<map> #include<cmath> const double PI = acos(-1.0); typedef long long ll; using namespace std; const int maxn = 35; int n, m; int f[maxn][maxn], root[maxn][maxn], num[maxn]; void print(int l, int r) { //先序遍历 根->左子树->右子树 printf("%d ", root[l][r]); if (root[l][r] > l) print(l, root[l][r] - 1); if (root[l][r] < r) print(root[l][r] + 1, r); } int main() { scanf("%d", &n); for (int i = 1; i <= n; i++) { scanf("%d", &num[i]); f[i][i] = num[i]; root[i][i] = i; f[i][i - 1] = f[i + 1][i] = 1; } for (int i = n; i >= 1; i--) { for (int j = i + 1; j <= n; j++) { for (int k = i; k <= j; k++) { if (f[i][k - 1] * f[k + 1][j] + f[k][k] <= f[i][j]) continue; f[i][j] = f[i][k - 1] * f[k + 1][j] + f[k][k]; root[i][j] = k; } } } printf("%d\n", f[1][n]); print(1, n); return 0; }
P2015 二叉苹果树
#include<iostream> #include<cstdio> #include<string> #include<algorithm> #include<queue> #include<set> #include<map> #include<cmath> const double PI = acos(-1.0); typedef long long ll; using namespace std; int n, cnt[110], dp[110][110]; int q; struct Edge { int w; int e; }t; vector<Edge> e[220]; void dfs(int u, int p) { for (int i = 0; i < e[u].size(); i++) { int v = e[u][i].e; if (v == p) continue; dfs(v, u); cnt[u] += cnt[v] + 1; for (int j = min(cnt[u], q); j; j--) { for (int k = min(j - 1, cnt[v]); k >= 0;) dp[u][j] = max(dp[u][j], dp[u][j - k - 1] + dp[v][k] + e[u][i].w); } } } int main() { scanf("%d%d", &n, &q); for (int i = 1; i < n; i++) { int x, y, w; scanf("%d%d%d", &x, &y, &w); t.e = y; t.w = w; e[x].push_back(t); t.e = x; e[y].push_back(t); } dfs(1, 0); printf("%d", dp[1][q]); return 0; }
洛谷P1352 没有上司的舞会
#include<iostream> #include<cstdio> #include<string> #include<algorithm> #include<queue> #include<set> #include<map> #include<cmath> const double PI = acos(-1.0); typedef long long ll; using namespace std; const int maxn = 6005; int w[maxn]; int v[maxn]; int f[maxn][2]; vector<int> son[maxn]; void dfs(int x) { f[x][0] = 0; //初始化 f[x][0]表示以x为根的子树,且x不参加舞会的最大快乐值 f[x][1] = w[x]; //f[x][1]表示以x为根的子树,且x参加舞会的最大快乐值 for (int i = 0; i < son[x].size(); i++) { int y = son[x][i]; dfs(y); f[x][0] += max(f[y][0], f[y][1]); //状态转移方程 f[x][1] += f[y][0]; } } int main() { int n; scanf("%d", &n); for (int i = 1; i <= n; i++) scanf("%d", &w[i]); for (int i = 1; i <= n - 1; i++) { int x, y; scanf("%d%d", &x, &y); //注意父亲在后 son[y].push_back(x); v[x]++; } int root; for (int i = 1; i <= n; i++) { if (!v[i]) { root = i; break; } } dfs(root); printf("%d\n", max(f[root][0], f[root][1])); return 0; }
树上的常见操作
const int maxn = 100005; vector<int> v[maxn]; int _size[maxn]; //结点大小 int mx_size[maxn]; int depth[maxn]; int Max[maxn]; int val[maxn]; void getsize(int x) { //一棵N个点的无权树,问每个结点的大小 _size[x] = 1; for (int i = 0; i < v[x].size(); i++) { getsize(v[x][i]); _size[x] += _size[v[x][i]]; } } void getdep(int x) { //一棵N个点的无权树,问每个结点的深度 for (int i = 0; i < v[x].size(); i++) { depth[v[x][i]] = depth[x] + 1; getdep(v[x][i]); //自顶向下 } } void getmax(int x) { //一棵N个点的点权树,问每个子树的点权和,点权最大值 Max[x] = val[x]; for (int i = 0; i < v[x].size(); i++) { getmax(v[x][i]); Max[x] = max(Max[x], Max[v[x][i]]); } }
求树的重心
定义:找到一个点,其所有的子树中最大的子树节点数最少,那么这个点就是这棵树的重心,删去重心后,生成的多棵树尽可能平衡
C++代码
#include<iostream> #include<cstdio> #include<string> #include<algorithm> #include<queue> #include<set> #include<map> #include<cmath> const double PI = acos(-1.0); #define INF 0x3f3f3f3f typedef long long ll; using namespace std; const int maxn = 105; int n, m, ans; int len, lenp; int _size[maxn], id[maxn], p[maxn]; vector<int> e[maxn]; bool vis[maxn]; int dfs(int x) { if (!e[x].size()) return 1; int sum = 1; for (int i = 0; i < e[x].size(); i++) { if (!vis[e[x][i]]) { vis[e[x][i]] = true; sum += dfs(e[x][i]); } } return sum; } int main() { scanf("%d", &n); int x, y; for (int i = 1; i < n; i++) { scanf("%d%d", &x, &y); e[x].push_back(y); } for (int i = 1; i <= n; i++) { memset(vis, 0, sizeof vis); vis[i] = 1; _size[i] = dfs(i); } int Min = INF; for (int i = 1; i <= n; i++) { int Max = n - _size[i]; for (int j = 0; j < e[i].size(); j++) Max = max(Max, _size[e[i][j]]); Min = min(Max, Min); p[i] = Max; } for (int i = 1; i <= n; i++) { if (p[i] == Min) { lenp++; id[lenp] = i; } } printf("%d\n", lenp); //重心个数 for (int i = 1; i <= lenp; i++) printf("%d\n", id[i]); return 0; }