给定整数 n,求它的所有原根。
为了减小你的输出量,给出输出参数 dd,设 nn 的所有原根有 cc 个,从小到大分别为 g_1,\ldots,g_cg1,…,gc,你只需要依次输出
int phi[maxn]; int prime[maxn]; int vis[maxn]; int rt[maxn]; ll fac[maxn]; ll ans[maxn]; int cnt,num; int euler_sieve(int n) { int cnt = 0; for (int i = 2; i <= n; i++) { if (!vis[i]) prime[cnt++] = i; for (int j = 0; j < cnt; j++) { if (i * prime[j] > n) break; vis[i * prime[j]] = 1; if (i % prime[j] == 0) break; } } return cnt; } void phi_table(int n) { for (int i = 2; i <= n; i++) phi[i] = 0; phi[1] = 1; for (int i = 2; i <= n; i++) if (!phi[i]) for (int j = i; j <= n; j += i) { if (!phi[j]) phi[j] = j; phi[j] = phi[j] / i * (i - 1); } } void init(int tot) { rt[2] = rt[4] = 1; for (int i = 1; i < tot; i++) { for (int j = 1; (1ll * j * prime[i]) <= maxn - 10; j *= prime[i]) rt[j * prime[i]] = 1; for (int j = 2; (1ll * j * prime[i]) <= maxn - 10; j *= prime[i]) rt[j * prime[i]] = 1; } } ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a % b); } ll quickPower(ll a, ll b, ll m) { ll res = 1; ll base = a; while (b) { if (b & 1) { res *= base; res %= m; } base *= base; base %= m; b >>= 1; } return res; } void get_fac(int p) { for (int i = 2; i * i <= p; i++) { if (p % i == 0) { fac[++cnt] = i; while (p % i == 0) p /= i; } } if (p > 1) fac[++cnt] = p; } bool check ( ll x, ll p ) { if (quickPower(x, phi[p], p) != 1) return 0; for (int i = 1; i <= cnt; i++) { if (quickPower(x, phi[p] / fac[i], p) == 1) return 0; } return 1; } int find_rt(ll p) { for (int i = 1; i < p; i++) if (check(i, p)) return i; return 0; } void get_rt(ll p, ll x) { int prod = 1; for (int i = 1; i <= phi[p]; i++) { prod = (1ll * prod * x) % p; if (gcd(i, phi[p]) == 1) ans[++num] = prod; } } int main() { int tot = euler_sieve(maxn); phi_table(maxn); init(tot); int T; ll n, d; scanf("%d", &T); while (T--) { scanf("%lld%lld", &n, &d); if (rt[n]) { cnt = num = 0; get_fac(phi[n]); ll mm = find_rt(n); get_rt(n, mm); sort(ans + 1, ans + num + 1); printf("%d\n", num); for (int i = 1; i <= num / d; i++) printf("%d ", ans[i * d]); puts(""); } else puts("0\n"); } }