Golang 协程介绍
1. 用户态和内核态
内核态:cpu可以访问内存的所有数据,包括外围设备,例如硬盘,网卡,cpu也可以将自己从一个程序切换到另一个程序。
用户态:只能受限的访问内存,且不允许访问外围设备,占用cpu的能力被剥夺,cpu资源可以被其他程序获取。
1.1 为什么要有用户态和内核态?
由于需要限制不同的程序之间的访问能力, 防止他们获取别的程序的内存数据, 或者获取外围设备的数据, 并发送到网络, CPU划分出两个权限等级 -- 用户态和内核态。
2. 进程、线程、协程
进程
进程是资源(CPU、内存等)分配的基本单位,它是程序执行时的一个实例。程序运行时系统就会创建一个进程,并为它分配资源,然后把该进程放入进程就绪队列,进程调度器选中它的时候就会为它分配CPU时间,程序开始真正运行。
线程
线程是程序执行时的最小单位,它是进程的一个执行流,是CPU调度和分派的基本单位,一个进程可以由很多个线程组成,线程间共享进程的所有资源,每个线程有自己的堆栈和局部变量。线程由CPU独立调度执行,在多CPU环境下就允许多个线程同时运行。同样多线程也可以实现并发操作,每个请求分配一个线程来处理。
协程
协程是一种用户态的轻量级线程,协程拥有自己的寄存器上下文和栈。协程调度切换时,将寄存器上下文和栈保存到其他地方,在切回来的时候,恢复先前保存的寄存器上下文和栈。因此,协程能保留上一次调用时的状态(即所有局部状态的一个特定组合),每次过程重入时,就相当于进入上一次调用的状态,换种说法:进入上一次离开时所处逻辑流的位置。线程和进程的操作是由程序触发系统接口,最后的执行者是系统;协程的操作执行者则是用户自身程序,goroutine也是协程。
3. Golang 协程介绍
Golang 从 2009 年正式发布以来,依靠其极高运行速度和高效的开发效率,迅速占据市场份额。Golang 从语言级别支持并发,通过轻量级协程 Goroutine 来实现程序并发运行。
Goroutine 非常轻量,主要体现在以下两个方面:
-
上下文切换代价小: Goroutine 上下文切换只涉及到三个寄存器(PC / SP / DX)的值修改;而对比线程的上下文切换则需要涉及模式切换(从用户态切换到内核态)、以及 16 个寄存器、PC、SP…等寄存器的刷新;
-
内存占用少:线程栈空间通常是 2M,Goroutine 栈空间最小 2K;
-
Golang 程序中可以轻松支持10w 级别的 Goroutine 运行,而线程数量达到 1k 时,内存占用就已经达到 2G。
4. 调度模型简介
Go 程序通过调度器来调度Goroutine 在内核线程上执行,但是 Goroutine 并不直接绑定 OS 线程 M - Machine运行,而是由 Goroutine Scheduler 中的 P - Processor (逻辑处理器)来作获取内核线程资源的『中介』。Go 调度器模型我们通常叫做G-P-M 模型,他包括 4 个重要结构,分别是G、P、M、Sched:
Go的调度器内部有四个重要的结构:M,P,S,Sched,如上图所示(Sched未给出)
- M:M代表内核级线程,一个M就是一个线程,goroutine就是跑在M之上的;M是一个很大的结构,里面维护小对象内存cache(mcache)、当前执行的goroutine、随机数发生器等等非常多的信息
- G:代表一个goroutine,它有自己的栈,instruction pointer和其他信息(正在等待的channel等等),用于调度。
- P:P全称是Processor,处理器,它的主要用途就是用来执行goroutine的,所以它也维护了一个goroutine队列,里面存储了所有需要它来执行的goroutine
- Sched:代表调度器,它维护有存储M和G的队列以及调度器的一些状态信息等。
4.1 调度实现
从上图中看,有2个物理线程M,每一个M都拥有一个处理器P,每一个也都有一个正在运行的goroutine。
P的数量可以通过GOMAXPROCS()来设置,它其实也就代表了真正的并发度,即有多少个goroutine可以同时运行。
图中灰色的那些goroutine并没有运行,而是出于ready的就绪态,正在等待被调度。P维护着这个队列(称之为runqueue),
Go语言里,启动一个goroutine很容易:go function 就行,所以每有一个go语句被执行,runqueue队列就在其末尾加入一个
goroutine,在下一个调度点,就从runqueue中取出(如何决定取哪个goroutine?)一个goroutine执行。
当一个OS线程M0陷入阻塞时(如下图),P转而在运行M1,图中的M1可能是正被创建,或者从线程缓存中取出。
当MO返回时,它必须尝试取得一个P来运行goroutine,一般情况下,它会从其他的OS线程那里拿一个P过来,
如果没有拿到的话,它就把goroutine放在一个global runqueue里,然后自己睡眠(放入线程缓存里)。所有的P也会周期性的检查global runqueue并运行其中的goroutine,否则global runqueue上的goroutine永远无法执行。
另一种情况是P所分配的任务G很快就执行完了(分配不均),这就导致了这个处理器P很忙,但是其他的P还有任务,此时如果global runqueue没有任务G了,那么P不得不从其他的P里拿一些G来执行。一般来说,如果P从其他的P那里要拿任务的话,一般就拿run queue的一半,这就确保了每个OS线程都能充分的使用,如下图: