Bobo-browse是一个基于lucene的分组统计插件,可以完成对搜索结果的分面统计,比如“男装(221) 女装(332)”等。
这里做首次尝试,只谈使用,不谈原理。用熟了才有可能去研究仔细。
lucene3 + bobo-browse2.5
建索引,更新索引跟它没关系,仅关注搜索。索引建立好后,开始进行分面搜索。
bobo-spring.xml:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">
<!--
com.browseengine.bobo.facets.impl.SimpleFacetHandler no-analyzar
com.browseengine.bobo.facets.impl.MultiValueFacetHandler analyzar-enable
com.browseengine.bobo.facets.impl.CompactMultiValueFacetHandler analyzar-enable
com.browseengine.bobo.facets.impl.PathFacetHandler no-analyzar
com.browseengine.bobo.facets.impl.RangeFacetHandler no-analyzar
-->
<bean id="brand" class="com.browseengine.bobo.facets.impl.MultiValueFacetHandler">
<constructor-arg value="brand" />
</bean>
<bean id="pic_url1" class="com.browseengine.bobo.facets.impl.PathFacetHandler">
<constructor-arg value="pic_url1" />
<constructor-arg value="true" />
<property name="separator" value="/" />
</bean>
<bean id="sold_num" class="com.browseengine.bobo.facets.impl.SimpleFacetHandler">
<constructor-arg value="sold_num" />
</bean>
<bean id="price" class="com.browseengine.bobo.facets.impl.RangeFacetHandler">
<constructor-arg value="price" />
<constructor-arg>
<bean class="com.browseengine.bobo.facets.data.PredefinedTermListFactory">
<constructor-arg value="java.lang.Double"/>
<constructor-arg value="00000000000000000000" />
</bean>
</constructor-arg>
<constructor-arg>
<list>
<value>[* TO 2]</value>
<value>[3 TO 15000]</value>
<value>[15001 TO 17500]</value>
<value>[17501 TO *]</value>
</list>
</constructor-arg>
</bean>
<bean id="handlers" class="java.util.ArrayList">
<constructor-arg>
<list>
<ref bean="brand" />
<ref bean="pic_url1" />
<ref bean="price" />
<ref bean="sold_num" />
</list>
</constructor-arg>
</bean>
</beans>
代码:
@SuppressWarnings("deprecation")
public void testBoboBrowser(){
String splittype = "pic_url1";
String splittype2 = "price";
String splittype3 = "brand";
String splittype4 = "sold_num";
try {
// 1
IndexReader indexReader = IndexReader.open(
FSDirectory.open(
new File("D://workspace2//normandy_normandypositionii//NormandyPositionII//luceneIndex//goods//")));
BoboIndexReader boboIndexReader = BoboIndexReader.getInstance(indexReader);
BrowseRequest browseRequest = new BrowseRequest();
browseRequest.setCount(10);
browseRequest.setOffset(0);
// 2
String indexName = "brand";
String keywords = "飞扬";
Analyzer analyzer = new IKAnalyzer();
QueryParser queryParser = new QueryParser(Version.LUCENE_CURRENT, indexName, analyzer);
Query query = queryParser.parse(keywords);
browseRequest.setQuery(query);
// 3 设置分面类型
FacetSpec facetSpec = new FacetSpec();
facetSpec.setMaxCount(10);// 搜索出来的标签数目
facetSpec.setOrderBy(FacetSortSpec.OrderHitsDesc);
browseRequest.setFacetSpec(splittype, facetSpec);
browseRequest.setFacetSpec(splittype2, facetSpec);
browseRequest.setFacetSpec(splittype3, facetSpec);
browseRequest.setFacetSpec(splittype4, facetSpec);
// 4
Browsable browser = new BoboBrowser(boboIndexReader);
BrowseResult browseResult = browser.browse(browseRequest);
// 5
int totalHits = browseResult.getNumHits();
BrowseHit[] browseHit = browseResult.getHits();
System.out.println("total count:"+totalHits);
// 上面添加了哪些分类字段,这里就有哪些分类字段可以被取值
for(BrowseHit b : browseHit){
System.out.println(b.getField(splittype2));
}
// 搜索出来的标签
Map<String,FacetAccessible> facetMap = browseResult.getFacetMap();
System.out.println("bobo分面:"+splittype+"-----------------------");
FacetAccessible colorFacets = facetMap.get(splittype);
List<BrowseFacet> facetVals = colorFacets.getFacets();
for(BrowseFacet f:facetVals){
System.out.println(f.getValue() + "(" + f.getHitCount() + ")");
}
System.out.println("bobo分面:"+splittype2+"-----------------------");
colorFacets = facetMap.get(splittype2);
facetVals = colorFacets.getFacets();
for(BrowseFacet f:facetVals){
System.out.println(f.getValue() + "(" + f.getHitCount() + ")");
}
System.out.println("bobo分面:"+splittype3+"-----------------------");
colorFacets = facetMap.get(splittype3);
facetVals = colorFacets.getFacets();
for(BrowseFacet f:facetVals){
System.out.println(f.getValue() + "(" + f.getHitCount() + ")");
}
System.out.println("bobo分面:"+splittype4+"-----------------------");
colorFacets = facetMap.get(splittype4);
facetVals = colorFacets.getFacets();
for(BrowseFacet f:facetVals){
System.out.println(f.getValue() + "(" + f.getHitCount() + ")");
}
} catch (CorruptIndexException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
} catch (ParseException e) {
e.printStackTrace();
} catch (BrowseException e) {
e.printStackTrace();
}
}
结果:
total count:2
00000000000000000211
00000000000000001111
bobo分面:pic_url1-----------------------
分类1/(2)
bobo分面:price-----------------------
[3 TO 15000](2)
bobo分面:brand-----------------------
空间(2)
飞扬(2)
bobo分面:sold_num-----------------------
2(1)
3(1)